Displaying publications 1 - 20 of 87 in total

Abstract:
Sort:
  1. Salleh, S., McMinn, A., Mohammad, M., Yasin, Z., Tan, S.H.A.
    ASM Science Journal, 2010;4(1):81-88.
    MyJurnal
    Elevated temperature affects marine benthic algae by reducing growth and limits the transport of electron or carbon fixation which may reduce the ability of the cell to use light. This resulting excess light energy may cause photoinhibition. In this study, the photosystem II of the benthic microalgal communities from Casey, eastern Antarctic were relatively unaffected by significant changes in temperatures up to 8ºC, along with high PAR level (450 μmol photons m–2 s–1). Similarly, the community was able to photosynthesize as the temperature was reduced to –5ºC. Recovery from saturating and photoinhibiting irradiances was not significantly influenced by temperatures at both –5ºC and 8ºC. These responses were consistent with those recorded by past experiments on Antarctic benthic diatoms and temperate diatoms which showed that climate change did not have a significant impact on the ability of benthic microalgae to recover from photoinhibitory temperature stress.
    Matched MeSH terms: Photons
  2. Alawiah A, Alina MS, Bauk S, Abdul-Rashid HA, Gieszczyk W, Noramaliza MN, et al.
    Appl Radiat Isot, 2015 Apr;98:80-6.
    PMID: 25644081 DOI: 10.1016/j.apradiso.2015.01.016
    The thermoluminescence (TL) glow curves and kinetics parameters of Thulium (Tm) doped silica cylindrical fibers (CF) are presented. A linear accelerator (LINAC) was used to deliver high-energy radiation of 21MeV electrons and 10MV photons. The CFs were irradiated in the dose range of 0.2-10Gy. The experimental glow curve data was reconstructed by using WinREMS. The WinGCF software was used for the kinetic parameters evaluation. The TL sensitivity of Tm-doped silica CF is about 2 times higher as compared to pure silica CF. Tm-doped silica CF seems to be more sensitive to 21MeV electrons than to 10MV photons. Surprisingly, no supralinearity was displayed and a sub-linear response of Tm-doped silica CF was observed within the analyzed dose range for both 21MeV electrons and 10MV photons. The Tm-doped silica CF glow curve consists of 5 individual glow peaks. The Ea of peak 4 and peak 5 was highly dependent on dose when irradiated with photons. We also noticed that the electron radiation (21MeV) caused a shift of glow peak by 7-13°C to the higher temperature region compared with photons radiation (10MV). Our Tm-doped fibers seem to give high TL response after 21MeV electrons, which gives around 2 times higher peak integral as compared with 10MV photon radiation. We concluded that peak 4 is the first-order kinetic peak and can be used as the main dosimetric peak of Tm-doped silica CF.
    Matched MeSH terms: Photons
  3. Bradley DA, Mahdiraji GA, Ghomeishi M, Dermosesian E, Adikan FR, Rashid HA, et al.
    Appl Radiat Isot, 2015 Jun;100:43-9.
    PMID: 25533626 DOI: 10.1016/j.apradiso.2014.12.005
    A method for improving the thermoluminescence (TL) yield of silica-based optical fibres is demonstrated. Using silica obtained from a single manufacturer, three forms of pure (undoped) fibre (capillary-, flat-, and photonic crystal fibre (PCF)) and two forms of Ge-doped fibre (capillary- and flat-fibre) were fabricated. The pure fibre samples were exposed to 6 and 21MeV electrons, the doped fibres to 6MV photons. The consistent observation of large TL yield enhancement is strongly suggestive of surface-strain defects generation. For 6MeV irradiations of flat-fibre and PCF, respective TL yields per unit mass of about 12.0 and 17.5 times that of the undoped capillary-fibre have been observed. Similarly, by making a Ge-doped capillary-fibre into flat-fibre, the TL response is found to increase by some 6.0 times. Thus, in addition to TL from the presence of a dopant, the increase in fused surface areas of flat-fibres and PCF is seen to be a further important source of TL. The glow-curves of the undoped fibres have been analysed by computational deconvolution. Trap centre energies have been estimated and compared for the various fibre samples. Two trap centre types observed in capillary-fibre are also observed in flat-fibre and PCF. An additional trap centre in flat-fibre and one further trap centre in PCF are observed when compared to capillary fibre. These elevated-energy trap centres are linked with strain-generated defects in the collapsed regions of the flat fibre and PCF.
    Matched MeSH terms: Photons
  4. Refaei A, Wagiran H, Saeed MA, Hosssain I
    Appl Radiat Isot, 2014 Dec;94:89-92.
    PMID: 25146569 DOI: 10.1016/j.apradiso.2014.07.012
    Thermoluminescence (TL) properties (radiation sensitivity, dose response, signal fading) of Nd-doped SiO2 optical fibers irradiated with 1.25MeV photons to 1-50Gy were studied. The peak of the glow curve is around 190°C regardless of the dose. The dose response is linear up to 50Gy. The radiation sensitivity is 219nCmg(-1)Gy(-1). The fiber can be a potential candidate for photon radiotherapy dosimetry due to its high radiation sensitivity, linear dose response in a wide range, slow fading, and high spatial resolution due to the small size of the fiber.
    Matched MeSH terms: Photons
  5. Sahini MH, Hossain I, Wagiran H, Saeed MA, Ali H
    Appl Radiat Isot, 2014 Sep;92:18-21.
    PMID: 24973463 DOI: 10.1016/j.apradiso.2014.05.024
    Characteristics of the thermoluminescence (TL) responses of Yb- and Yb-Tb-doped optical fibers irradiated with 6MV photons are reported. The concentration of Yb in the Yb-doped optical fiber was 0.26mol%; the concentrations of Yb and Tb in the Yb-Tb-doped optical fiber were 0.62 and 0.2mol%, respectively. The TL dose responses are linear in the dose range 0.5-4Gy. The radiation sensitivity of the Yb-Tb material is almost two orders of magnitude higher than the sensitivity of the material doped with Yb alone.
    Matched MeSH terms: Photons
  6. Hashim S, Ibrahim SA, Che Omar SS, Alajerami YS, Saripan MI, Noor NM, et al.
    Appl Radiat Isot, 2014 Aug;90:258-60.
    PMID: 24858954 DOI: 10.1016/j.apradiso.2014.04.016
    Radiation effects of photon irradiation in pure Photonic Crystal Fibres (PCF) and Flat fibres (FF) are still much less investigated in thermoluminescense dosimetry (TLD). We have reported the TL response of PCF and FF subjected to 6 MV photon irradiation. The proposed dosimeter shows good linearity at doses ranging from 1 to 4 Gy. The small size of these detectors points to its use as a dosimeter at megavoltage energies, where better tissue-equivalence and the Bragg-Gray cavity theory prevails.
    Matched MeSH terms: Photons*
  7. Aboud H, Wagiran H, Hussin R, Ali H, Alajerami Y, Saeed MA
    Appl Radiat Isot, 2014 Aug;90:35-9.
    PMID: 24681645 DOI: 10.1016/j.apradiso.2014.01.012
    Characteristics of lithium potassium borate glasses with various copper concentrations are reported. The glasses were prepared by the melt quenching method and irradiated with photons to doses in the 0.5-4.0 Gy range. Glowing curves, dose response curves, reproducibility of the response, dose threshold, thermal fading and optical bleaching were studied.
    Matched MeSH terms: Photons
  8. Alajerami YS, Hashim S, Ramli AT, Saleh MA, Saripan MI, Alzimami K, et al.
    Appl Radiat Isot, 2013 Aug;78:21-5.
    PMID: 23644162 DOI: 10.1016/j.apradiso.2013.03.095
    New glasses Li2CO3-K2CO3-H3BO3 (LKB) co-doped with CuO and MgO, or with TiO2 and MgO, were synthesized by the chemical quenching technique. The thermoluminescence (TL) responses of LKB:Cu,Mg and LKB:Ti,Mg irradiated with 6 MV photons or 6 MeV electrons were compared in the dose range 0.5-4.0 Gy. The standard commercial dosimeter LiF:Mg,Ti (TLD-100) was used to calibrate the TL reader and as a reference in comparison of the TL properties of the new materials. The dependence of the responses of the new materials on (60)Co dose is linear in the range of 1-1000 Gy. The TL yields of both of the co-doped glasses and TLD-100 are greater for electron irradiation than for photon irradiation. The TL sensitivity of LKB:Ti,Mg is 1.3 times higher than the sensitivity of LKB:Cu,Mg and 12 times less than the sensitivity of TLD-100. The new TL dosimetric materials have low effective atomic numbers, good linearity of the dose responses, excellent signal reproducibility, and a simple glow curve structure. This combination of properties makes them suitable for radiation dosimetry.
    Matched MeSH terms: Photons
  9. Marashdeh MW, Bauk S, Tajuddin AA, Hashim R
    Appl Radiat Isot, 2012 Apr;70(4):656-62.
    PMID: 22304963 DOI: 10.1016/j.apradiso.2012.01.008
    The mass attenuation coefficients of Rhizophora spp. binderless particleboard with four different particle sizes (samples A, B, C and D) and natural raw Rhizophora spp. wood (sample E) were determined using single-beam photon transmission in the energy range between 16.59 and 25.26 keV. This was done by determining the attenuation of K(α1) X-ray fluorescent (XRF) photons from niobium, molybdenum, palladium, silver and tin targets. The results were compared with theoretical values of young-age breast (Breast 1) and water calculated using a XCOM computer program. It was found that the mass attenuation coefficient of Rhizophora spp. binderless particleboards to be close to the calculated XCOM values in water than natural Rhizophora spp. wood. Computed tomography (CT) scans were then used to determine the density profile of the samples. The CT scan results showed that the Rhizophora spp. binderless particleboard has uniform density compared to natural Rhizophora spp. wood. In general, the differences in the variability of the profile density decrease as the particle size of the pellet samples decreases.
    Matched MeSH terms: Photons
  10. Yaakob NH, Wagiran H, Hossain MI, Ramli AT, Bradley DA, Ali H
    Appl Radiat Isot, 2011 Sep;69(9):1189-92.
    PMID: 21507665 DOI: 10.1016/j.apradiso.2011.03.039
    We have investigated the thermoluminescent response and fading characteristics of germanium- and aluminium-doped SiO(2) optical fibres. These optical fibres were placed in a solid phantom and irradiated using 6 and 10 MV photon beams at doses ranging from 0.02 to 0.24 Gy delivered using a linear accelerator. In fading studies, the TL measurements were continued up to 14 days post-irradation. We have investigated the linearity of TL response as a function of dose for Ge-, Al-doped optical fibre and TLD-100 obtained for 6 and 10 MV photon irradiations. We have concentrated on doses that represent a small fraction of that delivered to the tumour to establish sensitivity of measurement for peripheral exposures in external beam radiotherapy.
    Matched MeSH terms: Photons
  11. Hashim S, Al-Ahbabi S, Bradley DA, Webb M, Jeynes C, Ramli AT, et al.
    Appl Radiat Isot, 2009 Mar;67(3):423-7.
    PMID: 18693024 DOI: 10.1016/j.apradiso.2008.06.030
    Modern linear accelerators, the predominant teletherapy machine in major radiotherapy centres worldwide, provide multiple electron and photon beam energies. To obtain reasonable treatment times, intense electron beam currents are achievable. In association with this capability, there is considerable demand to validate patient dose using systems of dosimetry offering characteristics that include good spatial resolution, high precision and accuracy. Present interest is in the thermoluminescence response and dosimetric utility of commercially available doped optical fibres. The important parameter for obtaining the highest TL yield during this study is to know the dopant concentration of the SiO2 fibre because during the production of the optical fibres, the dopants tend to diffuse. To achieve this aim, proton-induced X-ray emission (PIXE), which has no depth resolution but can unambiguously identify elements and analyse for trace elements with detection limits approaching microg/g, was used. For Al-doped fibres, the dopant concentration in the range 0.98-2.93 mol% have been estimated, with equivalent range for Ge-doped fibres being 0.53-0.71 mol%. In making central-axis irradiation measurements a solid water phantom was used. For 6-MV photons and electron energies in the range 6, 9 and 12 MeV, a source to surface distance of 100 cm was used, with a dose rate of 400 cGy/min for photons and electrons. The TL measurements show a linear dose-response over the delivered range of absorbed dose from 1 to 4 Gy. Fading was found to be minimal, less than 10% over five days subsequent to irradiation. The minimum detectable dose for 6-MV photons was found to be 4, 30 and 900 microGy for TLD-100 chips, Ge- and Al-doped fibres, respectively. For 6-, 9- and 12-MeV electron energies, the minimum detectable dose were in the range 3-5, 30-50 and 800-1400 microGy for TLD-100 chip, Ge-doped and Al-doped fibres, respectively.
    Matched MeSH terms: Photons
  12. Banjade DP, Tajuddin AA, Shukri A
    Appl Radiat Isot, 2001 Sep;55(3):297-302.
    PMID: 11515650
    Previous scattering and depth-dose investigations involving use of the Malaysian hardwood Rhizophora spp have shown this medium to produce good agreement with measurements made in water. Present study extends the comparison, now including measurements of percentage depth-dose made for photons at 6MV and 5 and 12MeV electron beams. For the 6 MV photon and 5 MeV electron beams, discrepancies between percentage depth-dose for Rhizophora spp and water, at all depths, are found to be within 2.6 and 2.4% respectively. At 12 MeV electron energies, measured percentage depth-doses in Rhizophora spp beyond 3.5cm depth are found to be in significant discord with those for water. The absorbed dose in water measured in Rhizophora spp at d(max) for all three beams produces discrepancies of no more than 1.1% when compared with measurements made in water.
    Matched MeSH terms: Photons
  13. Moradi F, Khandaker MU, Alrefae T, Ramazanian H, Bradley DA
    Appl Radiat Isot, 2019 Apr;146:120-126.
    PMID: 30769172 DOI: 10.1016/j.apradiso.2019.01.031
    Studies of radiation interactions with tissue equivalent material find importance in efforts that seek to avoid unjustifiable dose to patients, also in ensuring quality control of for instance nuclear medicine imaging equipment. Use of the Monte Carlo (MC) simulation tool in such characterization processes allows for the avoidance of costly experiments involving transmitted X- and γ-ray spectrometry. Present work investigates MC simulations of γ-ray transmission through tissue equivalent solid phantoms. Use has been made of a range of radionuclide gamma ray sources, 99mTc, 131I, 137Cs, 60Co (offering photons in the energy range from a few keV up to low MeV), popularly applied in medicine and in some cases for gauging in industry, obtaining the transmission spectra following their interaction with various phantom materials and thicknesses. In validation of the model, the simulated values of mass attenuation coefficients (μ/ρ) for different phantom materials and thicknesses were found to be in good agreement with reference values (NIST, 2004) to within 1.1% for all material compositions. For all of the primary photon energies and medium thicknesses of interest herein, results show that multiple scattering peaks are generally located at energies lower than 100 keV, although for the larger phantom thicknesses it is more difficult to distinguish single, double and multiple scattering in the gamma spectra. Transmitted photon spectra investigated for water, soft tissue, breast, brain and lung tissue slab phantoms are demonstrated to be practically independent of the phantom material, while a significant difference is observed for the spectra transmitted through bone that was proved to be due to the density effect and not material composition.
    Matched MeSH terms: Photons
  14. Bradley DA, Siti Rozaila Z, Khandaker MU, Almugren KS, Meevasana W, Abdul Sani SF
    Appl Radiat Isot, 2019 May;147:105-112.
    PMID: 30852298 DOI: 10.1016/j.apradiso.2019.02.016
    We explore the utility of controlled low-doses (0.2-100 Gy) of photon irradiation as initiators of structural alteration in carbon-rich materials. To-date our work on carbon has focused on β-, x- and γ-irradiations and the monitoring of radiotherapeutic doses (from a few Gy up to some tens of Gy) on the basis of the thermoluminescence (TL) signal, also via Raman and X-ray photo-spectroscopy (XPS), providing analysis of the dose dependence of single-walled carbon nanotubes (SWCNT). The work has been extended herein to investigate possibilities for analysis of structural alterations in graphite-rich mixtures, use being made of two grades of graphite-rich pencil lead, 8H and 2B, both being in the form produced for mechanical pencils (propelling or clutch pencils). 2B has the greater graphite content (approaching 98 wt %), 8H being a mixture of C, O, Al and Si (with respective weight percentages 39.2, 38.2, 9.8 and 12.8). Working on media pre-annealed at 400 °C, both have subsequently been irradiated to penetrating photon-mediated doses. Raman spectroscopy analysis has been carried out using a 532 nm laser Raman spectrometer, while for samples irradiated to doses from 1 to 40 Gy, XPS spectra were acquired using Al Kα sources (hv ∼1400 eV); carbon KLL Auger peaks were acquired using 50 eV Pass Energy. At these relatively low doses, alterations in order-disorder are clearly observed, defect generation and internal annealing competing as dominating effects across the dose range.
    Matched MeSH terms: Photons
  15. Begum M, Rahman AKMM, Abdul-Rashid HA, Yusoff Z, Mat Nawi SN, Khandaker MU, et al.
    Appl Radiat Isot, 2021 Aug;174:109771.
    PMID: 34048992 DOI: 10.1016/j.apradiso.2021.109771
    Present study concerns the key thermoluminescence (TL) properties of photonic crystal fibres (PCFs), seeking development of alternatively structured TL materials that are able to offer a advantages over existing passive dosimeters. In terms of their internal structure and light guiding properties the PCFs, collapsed and structured, differ significantly from that of conventional optical fibres. To investigate the dosimetric parameters of the PCFs use was made of a linear accelerator producing a 6 MV photon beam, delivering doses ranging from 0.5 Gy to 8 Gy. The parameters studied included TL response, linearity index, glow curves, relative sensitivity and TL signal fading, the results being compared against those obtained using TLD-100 chips. At 4 Gy photon dose the Ge-doped collapsed PCFs were found to provide a response 27 × that of structured PCF, also giving a TL yield similar to that of standard TLD-100 chips. Over post-irradiation periods of 15 and 30 days collapsed PCF TL signal fading were 8% and 17% respectively, with corresponding values of 37% and 64% for the structured PCF. Trapping parameters including the order of kinetics (b), activation energy (E) and frequency factor (s-1) were assessed with Chen's peak shape method. Lifetime of trapping centre was found to be (2.36 E+03) s and (9.03 E +01) s regarding the collapsed and structured PCF respectively with 6 Gy of photon beam. For the Ge-doped collapsed PCF, the high TL yield, sensitivity and low fading provide the basis of a highly promising system of TLD for radiotherapy applications.
    Matched MeSH terms: Photons*
  16. Sanusi MSM, Hassan WMSW, Hashim S, Ramli AT
    Appl Radiat Isot, 2021 Aug;174:109791.
    PMID: 34062400 DOI: 10.1016/j.apradiso.2021.109791
    Terrestrial radioactivity monitoring of 238U and 232Th series, and 40K in soil is an essential practice for radioactivity and radiation measurement of a place. In conventional practice, only basic data can be in-situ measured using a survey instrument, for example radioactivity concentration in soil and ambient dose equivalent rate. For other physical quantities, for example organ absorbed dose and organ equivalent dose, the measurement is impossible to be performed and can only be computed using Monte Carlo radiation transport simulations. In the past, most of the works only focused on calculating air-kerma-to-effective dose conversion factors. However, the information on organ dose conversion factors is scarcely documented and reported. This study was conducted to calculate organ absorbed and tissue-weighted equivalent dose conversion factors as a result of exposure from terrestrial gamma radiation. Series of organ dose conversion factors is produced based on computations from Monte Carlo MCNP5 simulations using modelled gamma irradiation geometry and established adult MIRD phantom. The study found out that most of the radiation exposed organs absorb energy at comparable rates, except for dense and superficial tissues i.e., skeleton and skin, which indicated slightly higher values. The good agreement between this work and previous studies demonstrated that our gamma irradiation geometry and modelling of gamma radiation sources are adequate. Therefore, the proposed organ dose conversion factors from this study are reasonably acceptable for dose estimation in environmental radioactivity monitoring practices.
    Matched MeSH terms: Photons
  17. Gharibshahi E, Saion E, Ashraf A, Gharibshahi L
    Appl Radiat Isot, 2017 Dec;130:211-217.
    PMID: 29028581 DOI: 10.1016/j.apradiso.2017.09.012
    Gamma radiolytic synthesis was used to produce size-controlled spherical platinum nanoparticles from an aqueous solution containing platinum tetraammine and polyvinyl pyrrolidone. The structural characterizations were performed using X-ray diffraction, and transmission electron microscopy. The transmission electron microscopy was used to determine the average particle diameter, which decreased from 4.4nm at 80kGy to 2.8nm at 120kGy. The UV-visible absorption spectrum was measured and found that platinum nanoparticles exhibit two steady absorption maxima in UV regions due to plasmonic excitation of conduction electrons, which blue shifted to lower wavelengths with a decrease in particle size. We consider the conduction electrons of platinum nanoparticles to follow Thomas-Fermi-Dirac-Weizsacker atomic model that they are not entirely free but weakly bounded to particles at lower-energy states {n = 5, l = 2 or 5d} and {n = 6, l = 0 or 6s}, which upon receiving UV photon energy the electrons make intra-band quantum excitations to higher-energy states allowed by the principles of quantum number that results the absorption maxima. We found an excellent agreement between the experimental and theoretical results, which suggest that the optical absorption of metal nanoparticles could be fundamentally described by a quantum mechanical interpretation, which could be more relevant to photo-catalysis and heterogeneous catalysis.
    Matched MeSH terms: Photons
  18. Al Kafi MA, Arib M, Al Moussa A, Alzorkany F, Shehadeh M, Mohd Yusof MF, et al.
    Appl Radiat Isot, 2023 Feb;192:110576.
    PMID: 36473319 DOI: 10.1016/j.apradiso.2022.110576
    The dosimetry of small fields has become tremendously important with the advent of intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery, where small field segments or very small fields are used to treat tumors. With high dose gradients in the stereotactic radiosurgery or radiotherapy treatment, small field dosimetry becomes challenging due to the lack of lateral electronic equilibrium in the field, x-ray source occlusion, and detector volume averaging. Small volume and tissue-equivalent detectors are recommended to overcome the challenges. With the lack of a perfect radiation detector, studies on available detectors are ongoing with reasonable disagreement and uncertainties. The joint IAEA and AAPM international code of practice (CoP) for small field dosimetry, TRS 483 (Alfonso et al., 2017) provides guidelines and recommendations for the dosimetry of small static fields in external beam radiotherapy. The CoP provides a methodology for field output factor (FOF) measurements and use of field output correction factors for a series of small field detectors and strongly recommends additional measurements, data collection and verification for CyberKnife (CK) robotic stereotactic radiotherapy/radiosurgery system using the listed detectors and more new detectors so that the FOFs can be implemented clinically. The present investigation is focused on using 3D gel along with some other commercially available detectors for the measurement and verification of field output factors (FOFs) for the small fields available in the CK system. The FOF verification was performed through a comparison with published data and Monte Carlo simulation. The results of this study have proved the suitability of an in-house developed 3D polymer gel dosimeter, several commercially available detectors, and Gafchromic films as a part of small field dosimetric measurements for the CK system.
    Matched MeSH terms: Photons/therapeutic use
  19. Leong LH, Kandaiya S, Seng NB
    Australas Phys Eng Sci Med, 2007 Jun;30(2):135-40.
    PMID: 17682403
    The oxidation of ferrous to ferric ions due to ionizing radiation has been used for chemical dosimetry since 1927. The introduction of metal indicator dye xylenol orange (XO) sensitises the measurement of ferric ion yield. A ferrous sulphate- agarose- xylenol orange (FAX) gel was prepared and the gel then exposed to dose ranging from 0.2 to 10 Gy using various high energy photon and electron beams from a linear accelerator. Some general characteristics of FAX such as energy dependence, optical density (OD)-dose relationship, reproducibility and auto-oxidation of ferrous ions were analysed. The radiation yield G of the gel was calculated for gels prepared in oxygen and in air and the values were 46.3 +/- 2.1 and 40.9 +/- 1.4 Fe3+ per 100 eV for photons respectively. However for stock gel which was kept for 5 days pre-irradiation the G value decreased to 36.6 +/- 1.1. The gel shows linearity in OD-dose relationship, energy independence and reproducibility over the dose range investigated. Auto-oxidation of ferrous ions resulted in optical density changes of less than 1.5% per day.
    Matched MeSH terms: Photons
  20. Ababneh B, Tajuddin AA, Hashim R, Shuaib IL
    Australas Phys Eng Sci Med, 2016 Dec;39(4):871-876.
    PMID: 27628943 DOI: 10.1007/s13246-016-0482-6
    This paper reports the novel use of almond gum as a binder in manufacturing Rhizophora spp. particleboard. X-ray fluorescence spectroscopy was employed for analysis under photon energy range of 16.6-25.3 keV. Results showed that almond gum-bonded Rhizophora spp. particleboard can be used as tissue-equivalent phantom in diagnostic radiation. The calculated mass attenuation coefficients of the particleboards were consistent with the values of water calculated using XCOM program for the same photon energies, with p values of 0.056, 0.069, and 0.077 for samples A8, C0, and C8, respectively. However, no direct relationship was found between the percentage of adhesive and the mass attenuation coefficient. The results positively supported the use of almond gum as a binding agent in the fabrication of particleboards, which can be used as a phantom material in dosimetric and quality control applications.
    Matched MeSH terms: Photons*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links