Potentially toxic elements (PTEs) pose a great threat to ecosystems and long-term exposure causes adverse effects to wildlife and humans. Cadmium induces a variety of diseases including cancer, kidney dysfunction, bone lesions, anemia and hypertension. Here we review the ability of plants to accumulate cadmium from soil, air and water under different environmental conditions, focusing on absorption mechanisms and factors affecting these. Cadmium possess various transport mechanisms and pathways roughly divided into symplast and apoplast pathway. Excessive cadmium concentrations in the environment affects soil properties, pH and microorganism composition and function and thereby plant uptake. At the same time, plants resist cadmium toxicity by antioxidant reaction. The differences in cadmium absorption capacity of plants need more exploration to determine whether it is beneficial for crop breeding or genetic modification. Identify whether plants have the potential to become hyperaccumulator and avoid excessive cadmium uptake by edible plants. The use of activators such as wood vinegar, GLDA (Glutamic acid diacetic acid), or the placement of earthworms and fungi can speed up phytoremediation of plants, thereby reducing uptake of crop varieties and reducing human exposure, thus accelerating food safety and the health of the planet.
Oil palm is an important economic crop for Malaysia. Genetic engineering could be applied to produce transgenic oil palms with high value-added fatty acids and novel products to ensure the sustainability of the palm oil industry. Establishment of a reliable transformation and regeneration system is essential for genetic engineering. Biolistic was initially chosen as the method for oil palm transformation as it has been the most successful method for monocotyledons to date. Optimization of physical and biological parameters, including testing of promoters and selective agents, was carried out as a prerequisite for stable transformation. This has resulted in the successful transfer of reporter genes into oil palm and the regeneration of transgenic oil palm, thus making it possible to improve the oil palm through genetic engineering. Besides application of the Biolistics method, studies on transformation mediated by Agrobacterium and utilization of the green fluorescent protein gene as a selectable marker gene have been initiated. Upon the development of a reliable transformation system, a number of useful targets are being projected for oil palm improvement. Among these targets are high-oleate and high-stearate oils, and the production of industrial feedstock such as biodegradable plastics. The efforts in oil palm genetic engineering are thus not targeted as commodity palm oil. Due to the long life cycle of the palm and the time taken to regenerate plants in tissue culture, it is envisaged that commercial planting of transgenic palms will not occur any earlier than the year 2020.