Displaying all 4 publications

Abstract:
Sort:
  1. Chung LY, Yap KF, Goh SH, Mustafa MR, Imiyabir Z
    Phytochemistry, 2008 May;69(7):1548-54.
    PMID: 18334259 DOI: 10.1016/j.phytochem.2008.01.024
    The bark extract of Melicope subunifoliolata (Stapf) T.G. Hartley showed competitive muscarinic receptor binding activity. Six polymethoxyflavones [melibentin (1); melisimplexin (3); 3,3',4',5,7-pentamethoxyflavone (4); meliternatin (5); 3,5,8-trimethoxy-3',4',6,7-bismethylenedioxyflavone (6); and isokanugin (7)] and one furanocoumarin [5-methoxy-8-geranyloxypsoralen (2)] were isolated from the bark extract. Compounds 2 and 6 were isolated for the first time from M. subunifoliolata. The methoxyflavones (compounds 1, 3, 4, 5, 6, and 7) show moderate inhibition in a muscarinic receptor binding assay, while the furanocoumarin (compound 2) is inactive. The potency of the methoxyflavones to inhibit [(3)H]NMS-muscarinic receptor binding is influenced by the position and number of methoxy substitution. The results suggest these compounds are probably muscarinic modulators, agonists or partial agonists/antagonists.
    Matched MeSH terms: Receptors, Muscarinic/metabolism*
  2. Ameer OZ, Salman IM, Siddiqui MJ, Yam MF, Sriramaneni RN, Sadikun A, et al.
    J Acupunct Meridian Stud, 2009 Dec;2(4):288-93.
    PMID: 20633504 DOI: 10.1016/S2005-2901(09)60070-4
    This study aimed to elucidate the mechanism(s) of the spasmogenic action of Loranthus ferrugineus in isolated guinea pig ileum. Thus the contractile responses of guinea pig ileum to graded additions of either L. ferrugineus methanol extract or its n-butanol fraction were tested in the presence and absence of various pharmacological interventions. The data showed that L. ferrugineus methanol extract and the n-butanol fraction produced a concentration-dependent spasmogenic effect in isolated guinea pig ileum segments. These effects were significantly inhibited in the presence of 1 microM atropine. In contrast, the response to the lowest concentrations of L. ferrugineus methanol extract (0.25, 0.5 and 1 mg/mL) and n-butanol fraction of L. ferrugineus (0.125, 0.25 and 0.5 mg/mL) were considerably enhanced in the presence of 0.05 microM neostigmine. Neither L. ferrugineus methanol extract nor n-butanol fraction contractile responses were affected upon the incubation of the ileal segments with 100 microM hexamethonium. The results of this study show that the spasmogenic effect of L. ferrugineus is possibly mediated through a direct action on intestinal muscarinic receptors. It is suggested that the bioactive constituents of L. ferrugineus serve as a substrate for acetylcholinesterase.
    Matched MeSH terms: Receptors, Muscarinic/metabolism
  3. Khalid A, Shakeel R, Justin S, Iqbal G, Shah SAA, Zahid S, et al.
    Curr Drug Targets, 2017;18(13):1545-1557.
    PMID: 28302036 DOI: 10.2174/1389450118666170315120627
    BACKGROUND: Stress is involved in memory impairment through multiple mechanisms, including activation of hypothalamic-pituitary axis, which in turn activates release of corticosterone in blood. Cholinergic system blockade by the muscarinic antagonist, scopolamine, also impairs memory.

    OBJECTIVE: This study aimed to investigate the effect of turmeric (20mg/kg) on learning and memory and cholinergic system in a mouse model of stress along with cholinergic blockade.

    METHODS: Restrained stress was induced and cholinergic receptors were blocked using scopolamine in mice. Animals were treated with turmeric (turmeric rhizome powder which was also subjected to NMR analyses) and learning and social behavior was examined. Effect of turmeric on cholinergic muscarinic receptors (mAChR; M1, M3 and M5) gene expression was assessed by RT-PCR in both pre-frontal cortex and hippocampus.

    RESULTS: Ar-turmerone, curcuminoids and α-linolenic acid were the lead compounds present in turmeric extract. Increased serum corticosterone levels were observed in stressed mice when compared to the control group, while turmeric treatment significantly reduced serum corticosterone level. Turmeric treatment caused an improved learning and memory in Morris water maze test in stressed animals. Social novelty preference was also restored in turmeric treated animals. Following turmeric treatment, M5 expression was improved in the cortex and M3 expression was improved in the hippocampus of stress + scopolamine + turmeric treated group.

    CONCLUSIONS: These findings highlight the therapeutic role of turmeric by increasing the expression of M3, M5 and improving learning and memory. Turmeric can be an effective candidate for the treatment of amnesia caused by the stress.

    Matched MeSH terms: Receptors, Muscarinic/metabolism*
  4. Zakaria ZA, Hassan MH, Nurul Aqmar MN, Abd Ghani M, Mohd Zaid SN, Sulaiman MR, et al.
    Methods Find Exp Clin Pharmacol, 2007 Oct;29(8):515-20.
    PMID: 18040526
    This study was carried out in mice to determine the nonopioid receptor signaling pathway(s) that might modulate the antinociceptive activity of the aqueous and chloroform extracts of Muntingia calabura (M. calabura) leaves, using the hot-plate test. The leaves of M. calabura were sequentially soaked [1:2 (w/v); 72 h] in distilled water (dH(2)O) and chloroform. The 50% concentration extracts were selected for this study based on the plant's previously established antinociceptive profiles. The mice (n = 7) were pretreated (s.c.) for 10 min with the selected nonopioid receptor antagonists, followed by the (s.c.) administration of the respective extract. The latency of discomfort was recorded at the interval time of 0.5, 1, 2, 3, 4 and 5 h after the extract administration. The 5 mg/kg atropine, 10 mg/kg phenoxybenzamine, 10 mg/kg yohimbine, 10 mg/kg pindolol, 1 mg/kg haloperidol and 10 mg/kg bicuculline caused significant (p < 0.05) reduction in the aqueous extract-induced antinociceptive activity. The 10 mg/kg phenoxybenzamine, 10 mg/kg yohimbine, 10 mg/kg pindolol and 10 mg/kg bicuculline caused significant (p < 0.05) reduction in the chloroform extract-induced antinociceptive activity. In conclusion, the central antinociceptive activity of M. calabura leaves appears to be involved in the modulation of various nonopioid receptor signaling pathways. Its aqueous extract antinociceptive activity is mediated via modulation of the muscarinic, alpha(1)-adrenergic, alpha(2)-adrenergic, beta-adrenergic, dopaminergic and GABAergic receptors, while its chloroform extract activity is mediated via modulation of the alpha(1)-adrenergic, alpha(2)-adrenergic, beta-adrenergic and GABAergic receptors.
    Matched MeSH terms: Receptors, Muscarinic/metabolism
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links