Hyaluronic acid (HA) plays multifaceted role in regulating the various biological processes such as skin repairmen, diagnosis of cancer, wound healing, tissue regeneration, anti-inflammatory, and immunomodulation. Owing to its remarkable biomedical and tissue regeneration potential, HA has been numerously employed as one of the imperative components of the cosmetic and nutricosmetic products. The present review aims to summarize and critically appraise recent developments and clinical investigations on cosmetic and nutricosmetic efficacy of HA for skin rejuvenation. A thorough analysis of the literature revealed that HA based formulations (i.e., gels, creams, intra-dermal filler injections, dermal fillers, facial fillers, autologous fat gels, lotion, serum, and implants, etc.) exhibit remarkable anti-wrinkle, anti-nasolabial fold, anti-aging, space-filling, and face rejuvenating properties. This has been achieved via soft tissue augmentation, improved skin hydration, collagen and elastin stimulation, and face volume restoration. HA, alone or in combination with lidocaine and other co-agents, showed promising efficacy in skin tightness and elasticity, face rejuvenation, improving aesthetic scores, reducing the wrinkle scars, longevity, and tear trough rejuvenation. Our critical analysis evidenced that application/administration of HA exhibits outstanding nutricosmetic efficacy and thus is warranted to be used as a prime component of cosmetic products.
Company A is a brownfield refinery that had been in service for over 25 years and has its own system to generate GOX for its needed utility usage. Noting of the hazards of GOX and in consideration of an aged refinery, this research is of the intent to evaluate the risk of GOX in the aspect of personnel and process safety; and to provide recommendation or mitigations planning with regards to Company A’s existing hardware through Bow Tie review. The analysis was done taking into consideration the data compiled as well as the inherited Process Safety Assessment (PSA) findings of Company A that served as secondary data to this research. It was observed that Company A personnel are well versed with the risk and hazards of GOX system and through the plant rejuvenation and material upgrade works, the hazards were mitigated to a lower risk within the risk matrix. The implementation and upgrade works had served to add more barriers to the left side of the bow tie as well as ensuring that the aged complex is well equipped with needed safeguarding strategies (from inherent safer design, passive & active safeguarding and procedural controls) to avoid the occurrence of potential oxygen fire or explosion incident.
Mesenchymal stem cells (MSCs) are susceptible to replicative senescence and senescence-associated functional decline, which hampers their use in regenerative medicine. Senotherapeutics are drugs that target cellular senescence through senolytic and senomorphic functions to induce apoptosis and suppress chronic inflammation caused by the senescence-associated secreted phenotype (SASP), respectively. Therefore, senotherapeutics could delay aging-associated degeneration. They could also be used to eliminate senescent MSCs during in vitro expansion or bioprocessing for transplantation. In this review, we discuss the role of senotherapeutics in MSC senescence, rejuvenation, and transplantation, with examples of some tested compounds in vitro. The prospects, challenges, and the way forward in clinical applications of senotherapeutics in cell-based therapeutics are also discussed.
Injectable rejuvenation treatments used in Caucasians might not always suit Asians as the visible signs of aging manifest differently, underscoring a need for Asian-specific strategies that correct underlying structural deficiencies and cumulative age-related changes. The presented Target-Specific Sandwich Technique (TSST) aims to simultaneously restore, rejuvenate, and enhance faces through the distribution of minute amounts of different fillers with different rheologies, using a minimal number of entry points in strategic facial areas and different soft tissue layers in Asians. A total of 14 patients underwent the presented TSST and were subsequently assessed for satisfaction with the treatment and the outcome of the treatment. With 3 cc of fillers, patients experienced a rejuvenated appearance with brow support, brow ridge softening, less severe nasolabial folds, and corrected tear trough hollows. Fillers in the lateral canthal and mandibular angles lifted mouth corners, improved submandibular jowls, and defined the lower face. Although the prejowl sulcus received minimal filler, it appeared subtler, relaxed, and had fewer lines visible while smiling. Overall, patients appeared less tense, rejuvenated, and had improved light reflection and firmer skin. These were due to tissues being supported upward and laterally by fillers in areas of bone resorption-induced volume loss.
Clinical trials using human mesenchymal stem/stromal cells (hMSCs) for cell replacement therapy showed varied outcomes, where cells' efficacy has been perceived as the limiting factor. In particular, the quality and number of the expanded cells in vitro. In this study, we aimed to determine molecular signatures of hMSCs derived from the pulp of extracted deciduous teeth (SHED) and Wharton's jelly (WJSCs) that associated with cellular ageing during in vitro passaging. We observed distinct phenotypic changes resembling proliferation reduction, cell enlargement, an increase cell population in G2/M phase, and differentially expressed of tumor suppressor p53 in passage (P) 6 as compared to P3, which indicating in vitro cell senescence. The subsequent molecular analysis showed a set of diverse differentially expressed miRNAs and mRNAs involved in maintaining cell proliferation and stemness properties. Considering the signaling pathway related to G2/M DNA damage regulation is widely recognized as part of anti-proliferation mechanism controlled by p53, we explored possible miRNA-mRNA interaction in this regulatory pathway based on genomic coordinates retrieved from miRanda. Our work reveals the potential reason for SHED underwent proliferation arrest due to the direct impinge on the expression of CKS1 by miRNAs specifically miR-22 and miR-485-5p which lead to down regulation of CDK1 and Cyclin B. It is intended that our study will contribute to the understanding of these miRNA/mRNA driving the biological process and regulating different stages of cell cycle is beneficial in developing effective rejuvenation strategies in order to obtain quality stem cells for transplantation.
Rapid growth of the geriatric population has been made possible with advancements in pharmaceutical and health sciences. Hence, age-associated diseases are becoming more common. Aging encompasses deterioration of the immune system, known as immunosenescence. Dysregulation of the immune cell production, differentiation, and functioning lead to a chronic subclinical inflammatory state termed inflammaging. The hallmarks of the aging immune system are decreased naïve cells, increased memory cells, and increased serum levels of pro-inflammatory cytokines. Mesenchymal stem cell (MSC) transplantation is a promising solution to halt immunosenescence as the cells have excellent immunomodulatory functions and low immunogenicity. This review compiles the present knowledge of the causes and changes of the aging immune system and the potential of MSC transplantation as a regenerative therapy for immunosenescence.
Minerals substituted apatite (M-HA) nanoparticles were prepared by the precipitation of minerals and phosphate reactants in choline chloride-Thiourea (ChCl-TU) deep eutectic solvent (DESs) as a facile and green way approach. After preparation of nanoparticles (F-M-HA (F=Fresh solvent)), the DESs was recovered productively and reprocess for the preparation of R-M-HA nanoparticles (R=Recycle solvent).The functional groups, phase, surface texture and the elemental composition of the M-HA nanoparticles were evaluated by advance characterization methods. The physicochemical results of the current work authoritative the successful uses of the novel (ChCl-TU) DESs as eco-friendly recuperate and give the medium for the preparation of M-HA nanoparticles. Moreover, the as-synthesized both M-HA nanoparticles exhibit excellent biocompatibility, consisting of cell co-cultivation and cell adhesion, in vivo according to surgical implantation of Wistar rats.