METHODS: The RVA G9P[8] genotype from a diarrhea sample was passaged in MA104 cells. The virus was evaluated by TEM, polyacrylamide gel electrophoresis, and indirect immunofluorescence assay. The complete genome of virus was obtained by RT-PCR and sequencing. The genomic and evolutionary characteristics of the virus were evaluated by nucleic acid sequence analysis with MEGA ver. 5.0.5 and DNASTAR software. The neutralizing epitopes of VP7 and VP4 (VP5* and VP8*) were analyzed using BioEdit ver. 7.0.9.0 and PyMOL ver. 2.5.2.
RESULTS: The RVA N4006 (G9P[8] genotype) was adapted in MA104 cells with a high titer (105.5 PFU/mL). Whole-genome sequence analysis showed N4006 to be a reassortant rotavirus of Wa-like G9P[8] RVA and the NSP4 gene of DS-1-like G2P[4] RVA, with the genotype constellation G9-P[8]-I1-R1-C1-M1-A1-N1-T1-E2-H1 (G9P[8]-E2). Phylogenetic analysis indicated that N4006 had a common ancestor with Japanese G9P[8]-E2 rotavirus. Neutralizing epitope analysis showed that VP7, VP5*, and VP8* of N4006 had low homology with vaccine viruses of the same genotype and marked differences with vaccine viruses of other genotypes.
CONCLUSION: The RVA G9P[8] genotype with the G9-P[8]-I1-R1-C1-M1-A1-N1-T1-E2-H1 (G9P[8]-E2) constellation predominates in China and may originate from reassortment between Japanese G9P[8] with Japanese DS-1-like G2P[4] rotaviruses. The antigenic variation of N4006 with the vaccine virus necessitates an evaluation of the effect of the rotavirus vaccine on G9P[8]-E2 genotype rotavirus.
METHODS: A survey was distributed to national experts in infectious diseases and health-care authorities (March 2015-April 2016), collecting information on local recommendations, costs and perception of barriers for implementation.
RESULTS: Forty-nine of the 79 contacted countries (62% response rate) provided a complete analyzable data. RVI was recommended in 27/49 countries (55%). Although five countries have recommended RVI since 2006, a large number (16, 33%) included RVI in a National Immunization Schedule between 2012 and 2014. The costs of vaccination are covered by the government (39%), by the GAVI Alliance (10%) or public and private insurance (8%) in some countries. However, in most cases, immunization is paid by families (43%). Elevated cost of vaccine (49%) is the main barrier for implementation of RVI. High costs of vaccination (rs=-0.39, p=0.02) and coverage of expenses by families (rs=0.5, p=0.002) significantly correlate with a lower immunization rate. Limited perception of RV illness severity by the families (47%), public-health authorities (37%) or physicians (24%) and the timing of administration (16%) are further major barriers to large- scale RVI programs.
CONCLUSIONS: After 10years since its introduction, the implementation of RVI is still unacceptably low and should remain a major target for global public health. Barriers to implementation vary according to setting. Nevertheless, public health authorities should promote education for caregivers and health-care providers and interact with local health authorities in order to implement RVI.
METHODS: The incidence, health service utilisation and household expenditure related to rotavirus gastroenteritis according to national income quintiles were obtained from local data sources. Multiple birth cohorts were distributed into income quintiles and followed from birth over the first five years of life in a multicohort, static model.
RESULTS: We found that the rich pay more out of pocket (OOP) than the poor, as the rich use more expensive private care. OOP payments among the poorest although small are high as a proportion of household income. Rotavirus vaccination results in substantial reduction in rotavirus episodes and expenditure and provides financial risk protection to all income groups. Poverty reduction benefits are concentrated amongst the poorest two income quintiles.
CONCLUSION: We propose that universal vaccination complements health financing reforms in strengthening Universal Health Coverage (UHC). ECEA provides an important tool to understand the implications of vaccination for UHC, beyond traditional considerations of economic efficiency.