Displaying publications 1 - 20 of 41 in total

Abstract:
Sort:
  1. Asghar A, Tan YC, Zahoor M, Zainal Abidin SA, Yow YY, Khan E, et al.
    Sci Rep, 2021 Jul 05;11(1):13859.
    PMID: 34226594 DOI: 10.1038/s41598-021-92622-0
    The emergence and spread of antimicrobial resistance have been of serious concern to human health and the management of bacterial infectious diseases. Effective treatment of these diseases requires the development of novel therapeutics, preferably free of side effects. In this regard, natural products are frequently conceived to be potential alternative sources for novel antibacterial compounds. Herein, we have evaluated the antibacterial activity of the epicarp extracts of the Malaysian cultivar of yellow rambutan fruit (Nephelium lappaceum L.) against six pathogens namely, Bacillus subtilis, methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pyogenes, Pseudomonas aeruginosa, Klebsiella pneumoniae and Salmonella enterica. Among a series of solvent extracts, fractions of ethyl acetate and acetone have revealed significant activity towards all tested strains. Chemical profiling of these fractions, via HPLC, LC-MS and GC-MS, has generated a library of potentially bioactive compounds. Downstream virtual screening, pharmacological prediction, and receptor-ligand molecular dynamics simulation have eventually unveiled novel potential antibacterial compounds, which can be extracted for medicinal use. We report compounds like catechin, eplerenone and oritin-4-beta-ol to be computationally inhibiting the ATP-binding domain of the chaperone, DnaK of P. aeruginosa and MRSA. Thus, our work follows the objective to propose new antimicrobials capable of perforating the barrier of resistance posed by both the gram positives and the negatives.
    Matched MeSH terms: Salmonella enterica/drug effects; Salmonella enterica/pathogenicity
  2. Akbar N, Siddiqui R, Iqbal M, Sagathevan K, Kim KS, Habib F, et al.
    ACS Omega, 2021 May 11;6(18):12261-12273.
    PMID: 34056379 DOI: 10.1021/acsomega.1c01137
    Among several animals, Rattus rattus (rat) lives in polluted environments and feeds on organic waste/small invertebrates, suggesting the presence of inherent mechanisms to thwart infections. In this study, we isolated gut bacteria of rats for their antibacterial activities. Using antibacterial assays, the findings showed that the conditioned media from selected bacteria exhibited bactericidal activities against Gram-negative (Escherichia coli K1, Klebsiella pneumoniae, Pseudomonas aeruginosa, Serratia marcescens, and Salmonella enterica) and Gram-positive (Bacillus cereus, methicillin-resistant Staphylococcus aureus, and Streptococcus pyogenes) pathogenic bacteria. The conditioned media retained their antibacterial properties upon heat treatment at boiling temperature for 10 min. Using MTT assays, the conditioned media showed minimal cytotoxic effects against human keratinocyte cells. Active conditioned media were subjected to tandem mass spectrometry, and the results showed that conditioned media from Bacillus subtilis produced a large repertoire of surfactin and iturin A (lipopeptides) molecules. To our knowledge, this is the first report of isolation of lipopeptides from bacteria isolated from the rat gut. In short, these findings are important and provide a platform to develop effective antibacterial drugs.
    Matched MeSH terms: Salmonella enterica
  3. Akbar N, Khan NA, Sagathevan K, Iqbal M, Tawab A, Siddiqui R
    Sci Rep, 2019 11 18;9(1):17012.
    PMID: 31740685 DOI: 10.1038/s41598-019-52738-w
    Antimicrobial resistance is a major threat to human health, hence there is an urgent need to discover antibacterial molecule(s). Previously, we hypothesized that microbial gut flora of animals are a potential source of antibacterial molecules. Among various animals, Cuora amboinensis (turtle) represents an important reptile species living in diverse ecological environments and feed on organic waste and terrestrial organisms and have been used in folk medicine. The purpose of this study was to mine turtle's gut bacteria for potential antibacterial molecule(s). Several bacteria were isolated from the turtle gut and their conditioned media were prepared. Conditioned media showed potent antibacterial activity against several Gram-positive (Bacillus cereus, Streptococcus pyogenes and methicillin-resistant Staphylococcus aureus) and Gram-negative (neuropathogenic Escherichia coli K1, Serratia marcescens, Pseudomonas aeruginosa, Salmonella enterica and Klebsiella pneumoniae) pathogenic bacteria. Conditioned media-mediated bactericidal activity was heat-resistant when treated at 95°C for 10 min. By measuring Lactate dehydrogenase release, the results showed that conditioned media had no effect on human cell viability. Tandem Mass Spectrometric analysis revealed the presence of various secondary metabolites, i.e., a series of known as well as novel N-acyl-homoserine lactones, several homologues of 4-hydroxy-2-alkylquinolines, and rhamnolipids, which are the signature metabolites of Pseudomonas species. These findings are significant and provide the basis for rational development of therapeutic interventions against bacterial infections.
    Matched MeSH terms: Salmonella enterica/drug effects; Salmonella enterica/physiology
  4. Akbar N, Siddiqui R, Sagathevan K, Iqbal M, Khan NA
    Antibiotics (Basel), 2019 Sep 24;8(4).
    PMID: 31554316 DOI: 10.3390/antibiotics8040164
    For the past few decades, there has been limited progress in the development of novel antibacterials. Previously, we postulated that the gut microbiota of animals residing in polluted environments are a forthcoming supply of antibacterials. Among various species, the water monitor lizard is an interesting species that feeds on organic waste and the carcass of wild animals. Gut microbiota of the water monitor lizard were sequestered, identified and cultivated in RPMI-1640 to produce conditioned medium (CM). Next, the antimicrobial properties of CM were evaluated versus a selection of Gram-negative (Escherichia coli K1, Serratia marcescens,Pseudomonas aeruginosa, Salmonella enterica and Klebsiella pneumoniae) and Gram-positive bacteria (Streptococcus pyogenes, methicillin-resistant Staphylococcus aureus, and Bacillus cereus). CM were partially characterized by heat inactivation at 95°C for 10 min and tested against P. aeruginosa and S. pyogenes. CM were also tested against immortalized human keratinocytes (HaCaT) cells lines. The results demonstrated that gut microbiota isolated from water monitor lizard produced molecules with remarkable bactericidal activities. To determine the identity of the active molecules, CM were subjected to Liquid Chromatography-Mass Spectrometry. Several molecules were identified belonging to the classes of flavonoids, terpenoids, alkaloids, polyhydroxy alkaloids, polyacetylenes, bisphenols, amides, oxylipin and pyrazine derivatives with known broad-spectrum antimicrobial, anti-tumour, anti-oxidant, anti-inflammatory, and analgesic attributes. Furthermore, the detailed analysis of these molecules could lead us to develop effective therapeutic antibacterials.
    Matched MeSH terms: Salmonella enterica
  5. Muniandy S, Teh SJ, Appaturi JN, Thong KL, Lai CW, Ibrahim F, et al.
    Bioelectrochemistry, 2019 Jun;127:136-144.
    PMID: 30825657 DOI: 10.1016/j.bioelechem.2019.02.005
    Recent foodborne outbreaks in multiple locations necessitate the continuous development of highly sensitive and specific biosensors that offer rapid detection of foodborne biological hazards. This work focuses on the development of a reduced graphene oxide‑titanium dioxide (rGO-TiO2) nanocomposite based aptasensor to detect Salmonella enterica serovar Typhimurium. A label-free aptamer was immobilized on a rGO-TiO2 nanocomposite matrix through electrostatic interactions. The changes in electrical conductivity on the electrode surface were evaluated using electroanalytical methods. DNA aptamer adsorbed on the rGO-TiO2 surface bound to the bacterial cells at the electrode interface causing a physical barrier inhibiting the electron transfer. This interaction decreased the DPV signal of the electrode proportional to decreasing concentrations of the bacterial cells. The optimized aptasensor exhibited high sensitivity with a wide detection range (108 to 101 cfu mL-1), a low detection limit of 101 cfu mL-1 and good selectivity for Salmonella bacteria. This rGO-TiO2 aptasensor is an excellent biosensing platform that offers a reliable, rapid and sensitive alternative for foodborne pathogen detection.
    Matched MeSH terms: Salmonella enterica/isolation & purification*
  6. Rasheed MK, Hasan SS, Babar ZU, Ahmed SI
    Lancet Infect Dis, 2019 03;19(3):242-243.
    PMID: 30833059 DOI: 10.1016/S1473-3099(19)30051-9
    Matched MeSH terms: Salmonella enterica*
  7. Abatcha MG, Effarizah ME, Rusul G
    Int J Food Microbiol, 2019 Feb 02;290:180-183.
    PMID: 30342248 DOI: 10.1016/j.ijfoodmicro.2018.09.021
    Salmonella enterica serovar Paratyphi B (S. Paratyphi B) is a major foodborne pathogen distributed all over the world. However, little is known about the antibiotic resistance, genetic relatedness and virulence profile of S. Paratyphi B isolated from leafy vegetables and the processing environment in Malaysia. In this study, 6 S. Paratyphi B isolates were recovered from different vegetables and drain water of processing areas obtained from fresh food markets in Malaysia. The isolates were characterized by antibiogram, Pulsed-field gel electrophoresis (PFGE) and virulence genes. Antibiotic susceptibility test showed that 3 of the isolates were resistant to the antibiotics. These include S. Paratyphi B SP251 isolate, which was resistant to chloramphenicol, ampicillin, sulfonamides and streptomycin; Isolate SP246 which was resistant to chloramphenicol, sulfonamides and streptomycin and Isolate SP235 showing resistance to nalidixic acid only. PFGE subtyped the 6 S. Paratyphi B isolates into 6 distinct XbaI-pulsotypes, with a wide range of genetic similarity (0.55 to 0.9). The isolates from different sources and fresh food markets location were genetically diverse. Thirteen (tolC, orgA, spaN, prgH, sipB, invA, pefA, sofB, msgA, cdtB, pagC, spiA and spvB) out of the 17 virulence genes tested were found in all of the S. Paratyphi B isolates. Another gene (lpfC), was found only in one isolate (SP051). None of the isolates possessed sifA, sitC and ironN genes. In summary, this study provides unique information on antibiotic resistance, genetic relatedness, and virulotyping of S. Paratyphi B isolated from leafy vegetables and processing environment.
    Matched MeSH terms: Salmonella enterica/isolation & purification
  8. Abdullah WZW, Mackey BM, Karatzas KAG
    J Food Prot, 2018 Jan;81(1):93-104.
    PMID: 29271685 DOI: 10.4315/0362-028X.JFP-17-190
    Salmonella is an important foodborne pathogen, whose ability to resist stress and survive can vary among strains. This variability is normally not taken into account when predictions are made about survival in foods with negative consequences. Therefore, we examined the contribution of variable phenotypic properties to survival under stress in 10 Salmonella serovars. One strain (Typhimurium 10) was intentionally RpoS-negative; however, another strain (Heidelberg) showed an rpoS mutation, rendering it inactive. We assessed an array of characteristics (motility, biofilm formation, bile resistance, acid resistance, and colony morphology) that show major variability among strains associated with a 10- to 19-fold difference between the highest and the lowest strain for most characteristics. The RpoS status of isolates did not affect variability in the characteristics, with the exception of resistance to NaCl, acetic acid, lactic acid, and the combination of acetic acid and salt, where the variability between the highest and the lowest strain was reduced to 3.1-fold, 1.7-fold, 2-fold, and 1.7-fold, respectively, showing that variability was significant among RpoS-positive strains. Furthermore, we also found a good correlation between acid resistance and lysine decarboxylase activity, showing its importance for acid resistance, and demonstrated a possible role of RpoS in the lysine decarboxylase activity in Salmonella.
    Matched MeSH terms: Salmonella enterica/genetics*; Salmonella enterica/chemistry
  9. Chin PS, Yu CY, Ang GY, Yin WF, Chan KG
    J Glob Antimicrob Resist, 2017 06;9:41-42.
    PMID: 28300643 DOI: 10.1016/j.jgar.2016.12.017
    OBJECTIVES: Salmonella spp. represent one of the main diarrhoeal pathogens that are transmitted via the food supply chain. Here we report the draft genome sequence of a multidrug-resistant Salmonella enterica serovar Brancaster (PS01) that was isolated from poultry meat in Malaysia.

    METHODS: Genomic DNA was extracted from Salmonella strain PS01 and was sequenced using an Illumina HiSeq 2000 platform. The generated reads were de novo assembled using CLC Genomics Workbench. The draft genome was annotated and the presence of antimicrobial resistance genes was identified.

    RESULTS: The 5 036 442bp genome contains various antimicrobial resistance genes conferring resistance to aminoglycosides, fluoroquinolones, fosfomycin, macrolides, phenicols, sulphonamides, tetracyclines and trimethoprim. The β-lactamase gene blaTEM-176 encoding TEM-176 was also found in this strain.

    CONCLUSIONS: The genome sequence will aid in the understanding of drug resistance mechanisms in foodborne Salmonella Brancaster and highlights the need to ensure the judicious use of antibiotics in animal husbandry as well as the importance of implementing proper food handling and preparation practices.

    Matched MeSH terms: Salmonella enterica/classification; Salmonella enterica/genetics*
  10. Koh, S.P., Aziz, N., Sharifudin, S.A., Abdullah, R., Hamid, N.S.A., Sarip, J.
    Food Research, 2017;1(4):109-113.
    MyJurnal
    Foodborne illness is recognized as an emerging infectious disease. The incidence of foodborne
    infections is common and the majority cases are undiagnosed or unreported. Apart from some
    diarrhea or minor gastrointestinal problem, some foodborne pathogenic microbes may cause
    death, particularly to those people with weakened immune system. In this study, we have
    developed a new fermented papaya beverage using symbiotic culture of yeast and acetic acid
    bacteria under controlled biofermentation process. An in-vitro assessment of fermented papaya
    beverage against few foodborne pathogenic microorganism was conducted to determine
    its minimum bactericidal concentration (MBC>99). Three types of foodborne pathogen:
    Escherichia coli O157, Salmonella enterica serovar Typhimurium ATCC 53648, Salmonella
    enterica serovar Enteritidis (isolated from infectious chicken) were selected. From minimum
    bactericidal concentration (MBC>99) assay, both fermented papaya pulp and leaves beverages
    have shown 100% killing rate against three selected foodborne pathogenic microbes. Inversely,
    non-fermented papaya pulp and leaves beverages indicated no inhibition at all. In fact, further
    dilution of fermented papaya pulp and leaves beverages demonstrated different degree of
    MBC>99 and brix value, but the pH value remained less than 3.5. These findings indicated
    the combination of soluble solid compounds presents in both fermented papaya beverage and
    product acidity play an important role in the inhibition of pathogenic microorganisms. The
    preliminary promising results of this work have shown that the great potential of fermented
    papaya beverages as a preventive measure to reduce the incidence of foodborne illness.
    Matched MeSH terms: Salmonella enterica
  11. Tan MS, Moore SC, Tabor RF, Fegan N, Rahman S, Dykes GA
    BMC Microbiol, 2016 09 15;16:212.
    PMID: 27629769 DOI: 10.1186/s12866-016-0832-2
    BACKGROUND: Processing of fresh produce exposes cut surfaces of plant cell walls that then become vulnerable to human foodborne pathogen attachment and contamination, particularly by Salmonella enterica. Plant cell walls are mainly composed of the polysaccharides cellulose, pectin and hemicelluloses (predominantly xyloglucan). Our previous work used bacterial cellulose-based plant cell wall models to study the interaction between Salmonella and the various plant cell wall components. We demonstrated that Salmonella attachment was favoured in the presence of pectin while xyloglucan had no effect on its attachment. Xyloglucan significantly increased the attachment of Salmonella cells to the plant cell wall model only when it was in association with pectin. In this study, we investigate whether the plant cell wall polysaccharides mediate Salmonella attachment to the bacterial cellulose-based plant cell wall models through specific carbohydrate interactions or through the effects of carbohydrates on the physical characteristics of the attachment surface.

    RESULTS: We found that none of the monosaccharides that make up the plant cell wall polysaccharides specifically inhibit Salmonella attachment to the bacterial cellulose-based plant cell wall models. Confocal laser scanning microscopy showed that Salmonella cells can penetrate and attach within the tightly arranged bacterial cellulose network. Analysis of images obtained from atomic force microscopy revealed that the bacterial cellulose-pectin-xyloglucan composite with 0.3 % (w/v) xyloglucan, previously shown to have the highest number of Salmonella cells attached to it, had significantly thicker cellulose fibrils compared to other composites. Scanning electron microscopy images also showed that the bacterial cellulose and bacterial cellulose-xyloglucan composites were more porous when compared to the other composites containing pectin.

    CONCLUSIONS: Our study found that the attachment of Salmonella cells to cut plant cell walls was not mediated by specific carbohydrate interactions. This suggests that the attachment of Salmonella strains to the plant cell wall models were more dependent on the structural characteristics of the attachment surface. Pectin reduces the porosity and space between cellulose fibrils, which then forms a matrix that is able to retain Salmonella cells within the bacterial cellulose network. When present with pectin, xyloglucan provides a greater surface for Salmonella cells to attach through the thickening of cellulose fibrils.

    Matched MeSH terms: Salmonella enterica/physiology
  12. Thong KL, Ngoi ST, Chai LC, Teh CS
    Microb Drug Resist, 2016 Jun;22(4):259-72.
    PMID: 26683630 DOI: 10.1089/mdr.2015.0158
    The prevalence of quinolone-resistant Salmonella enterica is on the rise worldwide. Salmonella enterica is one of the major foodborne pathogens in Malaysia. Therefore, we aim to investigate the occurrence and mechanisms of quinolone resistance among Salmonella strains isolated in Malaysia. A total of 283 Salmonella strains isolated from food, humans, and animals were studied. The disk diffusion method was used to examine the quinolone susceptibility of the strains, and the minimum inhibitory concentration (MIC) values of nalidixic acid and ciprofloxacin were also determined. DNA sequencing of the quinolone resistance-determining regions (QRDRs) of gyrase and topoisomerase IV genes and the plasmid-borne qnr genes was performed. The transfer of the qnr gene was examined through transconjugation experiment. A total of 101 nalidixic acid-resistant Salmonella strains were identified. In general, all strains were highly resistant to nalidixic acid (average MICNAL, 170 μg/ml). Resistance to ciprofloxacin was observed in 30.7% of the strains (1 ≤ MICCIP ≤ 2 μg/ml). Majority of the strains contained missense mutations in the QRDR of gyrA (69.3%). Silent mutations were frequently detected in gyrB (75.2%), parC (27.7%), and parE (51.5%) within and beyond the QRDRs. Novel mutations were detected in parC and parE. The plasmid-borne qnrS1 variant was found in 36.6% of the strains, and two strains were found to be able to transfer the qnrS1 gene. Overall, mutations in gyrA and the presence of qnrS1 genes might have contributed to the high level of quinolone resistance among the strains. Our study provided a better understanding on the status of quinolone resistance among Salmonella strains circulating in Malaysia.
    Matched MeSH terms: Salmonella enterica/drug effects*; Salmonella enterica/genetics; Salmonella enterica/isolation & purification; Salmonella enterica/metabolism
  13. Tan MS, Rahman S, Dykes GA
    Appl Environ Microbiol, 2016 01 15;82(2):680-8.
    PMID: 26567310 DOI: 10.1128/AEM.02609-15
    Minimally processed fresh produce has been implicated as a major source of foodborne microbial pathogens globally. These pathogens must attach to the produce in order to be transmitted. Cut surfaces of produce that expose cell walls are particularly vulnerable. Little is known about the roles that different structural components (cellulose, pectin, and xyloglucan) of plant cell walls play in the attachment of foodborne bacterial pathogens. Using bacterial cellulose-derived plant cell wall models, we showed that the presence of pectin alone or xyloglucan alone affected the attachment of three Salmonella enterica strains (Salmonella enterica subsp. enterica serovar Enteritidis ATCC 13076, Salmonella enterica subsp. enterica serovar Typhimurium ATCC 14028, and Salmonella enterica subsp. indica M4) and Listeria monocytogenes ATCC 7644. In addition, we showed that this effect was modulated in the presence of both polysaccharides. Assays using pairwise combinations of S. Typhimurium ATCC 14028 and L. monocytogenes ATCC 7644 showed that bacterial attachment to all plant cell wall models was dependent on the characteristics of the individual bacterial strains and was not directly proportional to the initial concentration of the bacterial inoculum. This work showed that bacterial attachment was not determined directly by the plant cell wall model or bacterial physicochemical properties. We suggest that attachment of the Salmonella strains may be influenced by the effects of these polysaccharides on physical and structural properties of the plant cell wall model. Our findings improve the understanding of how Salmonella enterica and Listeria monocytogenes attach to plant cell walls, which may facilitate the development of better ways to prevent the attachment of these pathogens to such surfaces.
    Matched MeSH terms: Salmonella enterica/physiology*
  14. Kumaresan V, Bhatt P, Ganesh MR, Harikrishnan R, Arasu M, Al-Dhabi NA, et al.
    Mol Immunol, 2015 Dec;68(2 Pt B):421-33.
    PMID: 26477736 DOI: 10.1016/j.molimm.2015.10.001
    In aquaculture, accumulation of antibiotics resulted in development of resistance among bacterial pathogens. Consequently, it became mandatory to find alternative to synthetic antibiotics. Antimicrobial peptides (AMPs) which are described as evolutionary ancient weapons have been considered as promising alternates in recent years. In this study, a novel antimicrobial peptide had been derived from goose type lysozyme (LyzG) which was identified from the cDNA library of freshwater fish Channa striatus (Cs). The identified lysozyme cDNA contains 585 nucleotides which encodes a protein of 194 amino acids. CsLyzG was closely related to Siniperca chuatsi with 92.8% homology. The depicted protein sequence contained a GEWL domain with conserved GLMQ motif, 7 active residues and 2 catalytic residues. Gene expression analysis revealed that CsLyzG was distributed in major immune organs with highest expression in head kidney. Results of temporal expression analysis after bacterial (Aeromonas hydrophila) and fungal (Aphanomyces invadans) challenges indicated a stimulant-dependent expression pattern of CsLyzG. Two antimicrobial peptides IK12 and TS10 were identified from CsLyzG and synthesized. Antibiogram showed that IK12 was active against Salmonella enterica, a major multi-drug resistant (MDR) bacterial pathogen which produces beta lactamase. The IK12 induced loss of cell viability in the bacterial pathogen. Flow cytometry assay revealed that IK12 disrupt the membrane of S. enterica which is confirmed by scanning electron microscope (SEM) analysis that reveals blebs around the bacterial cell membrane. Conclusively, CsLyzG is a potential innate immune component and the identified antimicrobial peptide has great caliber to be used as an ecofriendly antibacterial substance in aquaculture.
    Matched MeSH terms: Salmonella enterica/drug effects*; Salmonella enterica/metabolism
  15. Ngoi ST, Teh CS, Chai LC, Thong KL
    Biomed Environ Sci, 2015 Oct;28(10):751-64.
    PMID: 26582097 DOI: 10.3967/bes2015.105
    Matched MeSH terms: Salmonella enterica/classification; Salmonella enterica/genetics*
  16. Patchanee P, Boonkhot P, Kittiwan N, Tadee P, Chotinun S
    PMID: 26867391
    Food-borne illness caused by Salmonella enterica remains a public health problem and results in economic loss worldwide. With the up-coming establish- ment of the ASEAN Economic Community (AEC) allowing unrestricted move- ment of labor and goods, there is a higher risk of pathogen transmission among the AEC countries. This study characterized and investigated the spatial and temporal associations of S. enterica strains isolated in AEC countries during 1940- 2012 compared with those isolated in northern-Thailand during 2011-2013. Of the 173 S. enterica strains examined, 68 sequence types (STs) and 32 clonal complexes (CCs) were identified by multi loci sequence typing. Twenty-one strains belonged to four sequence types new to AEC countries, and they constituted only two CCs. A number of strains originated from various countries with multiple hosts, were highlighted. There was evidence of strains circulating in the AEC region well over a decade. Such information will be important in formulating biosecurity measures, as well as in educating regarding the risk of disease transmission in AEC.
    Matched MeSH terms: Salmonella enterica/genetics*; Salmonella enterica/isolation & purification
  17. Tan SM, Lee SM, Dykes GA
    Foodborne Pathog Dis, 2015 Mar;12(3):183-9.
    PMID: 25562466 DOI: 10.1089/fpd.2014.1853
    Weak organic acids are widely used as preservatives and disinfectants in the food industry. Despite their widespread use, the antimicrobial mode of action of organic acids is still not fully understood. This study investigated the effect of acetic acid on the cell membranes and cellular energy generation of four Salmonella strains. Using a nucleic acid/protein assay, it was established that acetic acid did not cause leakage of intracellular components from the strains. A scanning electron microscopy study further confirmed that membrane disruption was not the antimicrobial mode of action of acetic acid. Some elongated Salmonella cells observed in the micrographs indicated a possibility that acetic acid may inhibit DNA synthesis in the bacterial cells. Using an ATP assay, it was found that at a neutral pH, acetic acid caused cellular energy depletion with an ADP/ATP ratio in the range between 0.48 and 2.63 (p<0.05) that was apparent for the four Salmonella strains. We suggest that this effect was probably due solely to the action of undissociated acid molecules. The antimicrobial effect of acetic acid was better under acidic conditions (ADP/ATP ratio of 5.56 ± 1.27; p<0.05), where the role of both pH and undissociated acid molecules can act together. We concluded that the inhibitory effect of acetic acid is not solely attributable to acidic pH but also to undissociated acid molecules. This finding has implication for the use of acetic acid as an antimicrobial against Salmonella on food products, such as chicken meat, which can buffer its pH.
    Matched MeSH terms: Salmonella enterica/drug effects*; Salmonella enterica/ultrastructure
  18. Khoo CH, Sim JH, Salleh NA, Cheah YK
    Antonie Van Leeuwenhoek, 2015 Jan;107(1):23-37.
    PMID: 25312847 DOI: 10.1007/s10482-014-0300-7
    Salmonella is an important food-borne pathogen causing disease in humans and animals worldwide. Salmonellosis may be caused by any one of over 2,500 serovars of Salmonella. Nonetheless, Salmonella enterica serovar Typhimurium and Salmonella enterica serovar Agona are the second most prevalent serovars isolated from humans and livestock products respectively. Limited knowledge is available about the virulence mechanisms responsible for diarrheal disease caused by them. To investigate the contribution of sopB, sopD and pipD as virulence factors in intracellular infections and the uniqueness of these bacteria becoming far more prevalent than other serovars, the infection model of Caenorhabditis elegans and phenotypic microarray were used to characterize their mutants. The strains containing the mutation in sopB, sopD and pipD genes were constructed by using latest site-specific group II intron mutagenesis approach to reveal the pathogenicity of the virulence factors. Overall, we observed that the mutations in sopB, sopD and pipD genes of both serovars did not exhibit significant decrease in virulence towards the nematode. This may indicate that these virulence effectors may not be universal virulence factors involved in conserved innate immunity. There are significant phenotypic differences amongst strains carrying sopB, sopD and pipD gene mutations via the analysis of biochemical profiles of the bacteria. Interestingly, mutant strains displayed different susceptibility to chemical stressors from several distinct pharmacological and structural classes when compared to its isogenic parental strains. These metabolic and chemosensitivity assays also revealed multiple roles of Salmonella virulence factors in nutrient metabolism and antibiotic resistance.
    Matched MeSH terms: Salmonella enterica/genetics; Salmonella enterica/isolation & purification; Salmonella enterica/pathogenicity*
  19. Muhamad Harish S, Sim KS, Najimudin N, Aziah I
    Genome Announc, 2015;3(6).
    PMID: 26564032 DOI: 10.1128/genomeA.01261-15
    Salmonella enterica subsp. enterica serovar Typhi is a human-restricted pathogen that causes typhoid fever. Even though it is a human-restricted pathogen, the bacterium is also isolated from environments such as groundwater and pond water. Here, we describe the genome sequence of the Salmonella enterica subsp. enterica serovar Typhi PM016/13 which was isolated from well water during a typhoid outbreak in Kelantan, Malaysia, in 2013.
    Matched MeSH terms: Salmonella enterica
  20. Muhamad Harish S, Sim KS, Mohd Nor F, Mat Hussin H, Hamzah WM, Najimudin N, et al.
    Genome Announc, 2015;3(6).
    PMID: 26564035 DOI: 10.1128/genomeA.01285-15
    We report here the complete genome sequence of Salmonella enterica subsp. enterica serovar Typhi B/SF/13/03/195 obtained from a typhoid carrier, who is a food handler in Pasir Mas, Kelantan.
    Matched MeSH terms: Salmonella enterica
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links