Displaying all 5 publications

Abstract:
Sort:
  1. Nouri A, Ang WL, Mahmoudi E, Chua SF, Mohammad AW, Benamor A, et al.
    Chemosphere, 2023 May;322:138219.
    PMID: 36828108 DOI: 10.1016/j.chemosphere.2023.138219
    Decorating nanomaterials on graphene oxide (GO) can enhance its adsorption capacity and removal efficiency of water pollutants. In this study, for the first time, nano-sized polylactic acid (PLA) has been successfully decorated on the surface of GO through a facile synthesis approach. The adsorptive efficiency of GO-PLA for removing methylene blue (MB) and tetracycline (TC) from an aqueous solution was examined. The characterization confirmed the successful decoration of PLA on GO nanosheets with the nano size of PLA. It was hypothesized that the PLA was decorated on the surface of GO through covalent bonding between oxygen-containing functional groups and lactide molecules. The optimum adsorption parameters determined were at the adsorbent dose of 0.5 g L-1, pH 4, contact time of 120 min, and temperature of 318 K. The pseudo-second-order kinetic model described the contaminants' adsorption behaviour, and the intraparticle diffusion model revealed that both surface adsorption and intraparticle diffusion controlled the adsorption process. Langmuir isotherm model best described the adsorption behaviour of the pollutants on GO-PLA and demonstrated the maximum monolayer uptake capacities of MB (332.5 mg g-1) and TC (223.7 mg g-1). The adsorption results indicated that the uptake capacities of GO-PLA in comparison to GO have increased by approximately 70% and 110% for MB and TC, respectively. These observations reflect the remarkable role of nano-sized PLA that enhanced the adsorption capacity due to its additional functional group and larger surface area.
    Matched MeSH terms: Tetracycline/chemistry
  2. Iqbal A, Saidu U, Adam F, Sreekantan S, Yahaya N, Ahmad MN, et al.
    Molecules, 2021 Apr 25;26(9).
    PMID: 33923041 DOI: 10.3390/molecules26092509
    In this work, mesoporous TiO2-modified ZnO quantum dots (QDs) were immobilised on a linear low-density polyethylene (LLDPE) polymer using a solution casting method for the photodegradation of tetracycline (TC) antibiotics under fluorescent light irradiation. Various spectroscopic and microscopic techniques were used to investigate the physicochemical properties of the floating hybrid polymer film catalyst (8%-ZT@LLDPE). The highest removal (89.5%) of TC (40 mg/L) was achieved within 90 min at pH 9 due to enhanced water uptake by the LDDPE film and the surface roughness of the hybrid film. The formation of heterojunctions increased the separation of photogenerated electron-hole pairs. The QDs size-dependent quantum confinement effect leads to the displacement of the conduction band potential of ZnO QDs to more negative energy values than TiO2. The displacement generates more reactive species with higher oxidation ability. The highly stable film photocatalyst can be separated easily and can be repeatedly used up to 8 cycles without significant loss in the photocatalytic ability. The scavenging test indicates that the main species responsible for the photodegradation was O2●-. The proposed photodegradation mechanism of TC was demonstrated in further detail based on the intermediates detected by LC-time-of-flight/mass spectrometry (LC/TOF-MS).
    Matched MeSH terms: Tetracycline/chemistry*
  3. Tran TV, Nguyen DTC, Le HTN, Bach LG, Vo DN, Lim KT, et al.
    Molecules, 2019 May 16;24(10).
    PMID: 31100932 DOI: 10.3390/molecules24101887
    In this study, a minimum-run resolution IV and central composite design have been developed to optimize tetracycline removal efficiency over mesoporous carbon derived from the metal-organic framework MIL-53 (Fe) as a self-sacrificial template. Firstly, minimum-run resolution IV, powered by the Design-Expert program, was used as an efficient and reliable screening study for investigating a set of seven factors, these were: tetracycline concentration (A: 5-15 mg/g), dose of mesoporous carbons (MPC) (B: 0.05-0.15 g/L), initial pH level (C: 2-10), contact time (D: 1-3 h), temperature (E: 20-40 °C), shaking speed (F: 150-250 rpm), and Na+ ionic strength (G: 10-90 mM) at both low (-1) and high (+1) levels, for investigation of the data ranges. The 20-trial model was analyzed and assessed by Analysis of Variance (ANOVA) data, and diagnostic plots (e.g., the Pareto chart, and half-normal and normal probability plots). Based on minimum-run resolution IV, three factors, including tetracycline concentration (A), dose of MPC (B), and initial pH (C), were selected to carry out the optimization study using a central composite design. The proposed quadratic model was found to be statistically significant at the 95% confidence level due to a low P-value (<0.05), high R2 (0.9078), and the AP ratio (11.4), along with an abundance of diagnostic plots (3D response surfaces, Cook's distance, Box-Cox, DFFITS, Leverage versus run, residuals versus runs, and actual versus predicted). Under response surface methodology-optimized conditions (e.g., tetracycline concentration of 1.9 mg/g, MPC dose of 0.15 g/L, and pH level of 3.9), the highest tetracycline removal efficiency via confirmation tests reached up to 98.0%-99.7%. Also, kinetic intraparticle diffusion and isotherm models were systematically studied to interpret how tetracycline molecules were absorbed on an MPC structure. In particular, the adsorption mechanisms including "electrostatic attraction" and "π-π interaction" were proposed.
    Matched MeSH terms: Tetracycline/chemistry*
  4. Oladoja NA, Adelagun RO, Ahmad AL, Unuabonah EI, Bello HA
    Colloids Surf B Biointerfaces, 2014 May 1;117:51-9.
    PMID: 24632030 DOI: 10.1016/j.colsurfb.2014.02.006
    A novel adsorbent, magnetic, macro-reticulated cross-linked chitosan (MRC) was synthesised for the removal of tetracycline (TC) from water using a source of biogenic waste (gastropod shells) as a pore-forming agent. The insertion of crosslinks into the chitosan frame was confirmed by FTIR analysis, while the stability of the MRC was demonstrated via a stability test performed in an acidic solution. The enhanced porosity of the MRC was confirmed by the evaluation of its porosity, a swelling test and the determination of its specific surface area. The time-concentration profile of the sorption of TC onto the MRC demonstrated that equilibrium was attained relatively quickly (120 min), and the data obtained fitted a pseudo second order (r(2)>0.99) kinetic equation better than a pseudo first order or reversible first order kinetic equation. The optimisation of process variables indicated that the sorption of TC onto the MRC was favoured at a low solution pH and that the presence of organics (simulated by the addition of humic acid) negatively impacted the magnitude of TC removal. The area of coverage of TC on the MRC (2.51 m(2)/g) was low compared to the specific surface area of the MRC (47.95 m(2)/g). The value of the calculated energy of adsorption of TC onto the MRC was 100 kJ/mol, which is far above the range of 1-16 kJ/mol stipulated for physical adsorption.
    Matched MeSH terms: Tetracycline/chemistry
  5. Ezhilarasu H, Ramalingam R, Dhand C, Lakshminarayanan R, Sadiq A, Gandhimathi C, et al.
    Int J Mol Sci, 2019 Oct 18;20(20).
    PMID: 31635374 DOI: 10.3390/ijms20205174
    Aloe vera (AV) and tetracycline hydrochloride (TCH) exhibit significant properties such as anti-inflammatory, antioxidant and anti-bacterial activities to facilitate skin tissue engineering. The present study aims to develop poly-ε-caprolactone (PCL)/ AV containing curcumin (CUR), and TCH loaded hybrid nanofibrous scaffolds to validate the synergistic effect on the fibroblast proliferation and antimicrobial activity against Gram-positive and Gram-negative bacteria for wound healing. PCL/AV, PCL/CUR, PCL/AV/CUR and PCL/AV/TCH hybrid nanofibrous mats were fabricated using an electrospinning technique and were characterized for surface morphology, the successful incorporation of active compounds, hydrophilicity and the mechanical property of nanofibers. SEM revealed that there was a decrease in the fiber diameter (ranging from 360 to 770 nm) upon the addition of AV, CUR and TCH in PCL nanofibers, which were randomly oriented with bead free morphology. FTIR spectra of various electrospun samples confirmed the successful incorporation of AV, CUR and TCH into the PCL nanofibers. The fabricated nanofibrous scaffolds possessed mechanical properties within the range of human skin. The biocompatibility of electrospun nanofibrous scaffolds were evaluated on primary human dermal fibroblasts (hDF) by MTS assay, CMFDA, Sirius red and F-actin stainings. The results showed that the fabricated PCL/AV/CUR and PCL/AV/TCH nanofibrous scaffolds were non-toxic and had the potential for wound healing applications. The disc diffusion assay confirmed that the electrospun nanofibrous scaffolds possessed antibacterial activity and provided an effective wound dressing for skin tissue engineering.
    Matched MeSH terms: Tetracycline/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links