Displaying all 7 publications

Abstract:
Sort:
  1. Passmore MR, Byrne L, Obonyo NG, See Hoe LE, Boon AC, Diab SD, et al.
    Respir Res, 2018 Nov 22;19(1):231.
    PMID: 30466423 DOI: 10.1186/s12931-018-0935-4
    BACKGROUND: Sepsis is a multi-system syndrome that remains the leading cause of mortality and critical illness worldwide, with hemodynamic support being one of the cornerstones of the acute management of sepsis. We used an ovine model of endotoxemic shock to determine if 0.9% saline resuscitation contributes to lung inflammation and injury in acute respiratory distress syndrome, which is a common complication of sepsis, and investigated the potential role of matrix metalloproteinases in this process.

    METHODS: Endotoxemic shock was induced in sheep by administration of an escalating dose of lipopolysaccharide, after which they subsequently received either no fluid bolus resuscitation or a 0.9% saline bolus. Lung tissue, bronchoalveolar fluid (BAL) and plasma were analysed by real-time PCR, ELISA, flow cytometry and immunohistochemical staining to assess inflammatory cells, cytokines, hyaluronan and matrix metalloproteinases.

    RESULTS: Endotoxemia was associated with decreased serum albumin and total protein levels, with activated neutrophils, while the glycocalyx glycosaminoglycan hyaluronan was significantly increased in BAL. Quantitative real-time PCR studies showed higher expression of IL-6 and IL-8 with saline resuscitation but no difference in matrix metalloproteinase expression. BAL and tissue homogenate levels of IL-6, IL-8 and IL-1β were elevated.

    CONCLUSIONS: This data shows that the inflammatory response is enhanced when a host with endotoxemia is resuscitated with saline, with a comparatively higher release of inflammatory cytokines and endothelial/glycocalyx damage, but no change in matrix metalloproteinase levels.

    Matched MeSH terms: Acute Lung Injury/chemically induced; Acute Lung Injury/metabolism*
  2. Kardia E, Ch'ng ES, Yahaya BH
    J Tissue Eng Regen Med, 2018 02;12(2):e995-e1007.
    PMID: 28105760 DOI: 10.1002/term.2421
    Aerosol-based cell therapy has emerged as a novel and promising therapeutic strategy for treating lung diseases. The goal of this study was to determine the safety and efficacy of aerosol-based airway epithelial cell (AEC) delivery in the setting of acute lung injury induced by tracheal brushing in rabbit. Twenty-four hours following injury, exogenous rabbit AECs were labelled with bromodeoxyuridine and aerosolized using the MicroSprayer® Aerosolizer into the injured airway. Histopathological assessments of the injury in the trachea and lungs were quantitatively scored (1 and 5 days after cell delivery). The aerosol-based AEC delivery appeared to be a safe procedure, as cellular rejection and complications in the liver and spleen were not detected. Airway injury initiated by tracheal brushing resulted in disruption of the tracheal epithelium as well as morphological damage in the lungs that is consistent with acute lung injury. Lung injury scores were reduced following 5 days after AEC delivery (AEC-treated, 0.25  ±  0.06 vs. untreated, 0.53  ±  0.05, P  lungs, following acute insults. These findings suggest that aerosol-based AEC delivery can be a valuable tool for future therapy to treat acute lung injury. Copyright © 2017 John Wiley & Sons, Ltd.
    Matched MeSH terms: Acute Lung Injury/pathology; Acute Lung Injury/physiopathology
  3. Shirbhate E, Pandey J, Patel VK, Kamal M, Jawaid T, Gorain B, et al.
    Pharmacol Rep, 2021 Dec;73(6):1539-1550.
    PMID: 34176080 DOI: 10.1007/s43440-021-00303-6
    Angiotensin-converting enzyme (ACE) and its homologue, ACE2, are commonly allied with hypertension, renin-angiotensin-aldosterone system pathway, and other cardiovascular system disorders. The recent pandemic of COVID-19 has attracted the attention of numerous researchers on ACE2 receptors, where the causative viral particle, SARS-CoV-2, is established to exploit these receptors for permitting their entry into the human cells. Therefore, studies on the molecular origin and pathophysiology of the cell response in correlation to the role of ACE2 receptors to these viruses are bringing novel theories. The varying level of manifestation and importance of ACE proteins, underlying irregularities and disorders, intake of specific medications, and persistence of assured genomic variants at the ACE genes are potential questions raising nowadays while observing the marked alteration in response to the SARS-CoV-2-infected patients. Therefore, the present review has focused on several raised opinions associated with the role of the ACE2 receptor and its impact on COVID-19 pathogenesis.
    Matched MeSH terms: Acute Lung Injury
  4. Wong JJ, Phan HP, Phumeetham S, Ong JSM, Chor YK, Qian S, et al.
    Crit Care Med, 2017 Jul 26.
    PMID: 28749854 DOI: 10.1097/CCM.0000000000002623
    OBJECTIVES: The Pediatric Acute Lung Injury Consensus Conference developed a pediatric specific definition for acute respiratory distress syndrome (PARDS). In this definition, severity of lung disease is stratified into mild, moderate, and severe groups. We aim to describe the epidemiology of patients with PARDS across Asia and evaluate whether the Pediatric Acute Lung Injury Consensus Conference risk stratification accurately predicts outcome in PARDS.

    DESIGN: A multicenter, retrospective, descriptive cohort study.

    SETTING: Ten multidisciplinary PICUs in Asia.

    PATIENTS: All mechanically ventilated children meeting the Pediatric Acute Lung Injury Consensus Conference criteria for PARDS between 2009 and 2015.

    INTERVENTIONS: None.

    MEASUREMENTS AND MAIN RESULTS: Data on epidemiology, ventilation, adjunct therapies, and clinical outcomes were collected. Patients were followed for 100 days post diagnosis of PARDS. A total of 373 patients were included. There were 89 (23.9%), 149 (39.9%), and 135 (36.2%) patients with mild, moderate, and severe PARDS, respectively. The most common risk factor for PARDS was pneumonia/lower respiratory tract infection (309 [82.8%]). Higher category of severity of PARDS was associated with lower ventilator-free days (22 [17-25], 16 [0-23], 6 [0-19]; p < 0.001 for mild, moderate, and severe, respectively) and PICU free days (19 [11-24], 15 [0-22], 5 [0-20]; p < 0.001 for mild, moderate, and severe, respectively). Overall PICU mortality for PARDS was 113 of 373 (30.3%), and 100-day mortality was 126 of 317 (39.7%). After adjusting for site, presence of comorbidities and severity of illness in the multivariate Cox proportional hazard regression model, patients with moderate (hazard ratio, 1.88 [95% CI, 1.03-3.45]; p = 0.039) and severe PARDS (hazard ratio, 3.18 [95% CI, 1.68, 6.02]; p < 0.001) had higher risk of mortality compared with those with mild PARDS.

    CONCLUSIONS: Mortality from PARDS is high in Asia. The Pediatric Acute Lung Injury Consensus Conference definition of PARDS is a useful tool for risk stratification.

    Matched MeSH terms: Acute Lung Injury
  5. Khor PY, Mohd Aluwi MFF, Rullah K, Lam KW
    Eur J Med Chem, 2019 Dec 01;183:111704.
    PMID: 31557608 DOI: 10.1016/j.ejmech.2019.111704
    Curcumin is a small organic molecule with pleiotropic biological activities. However, its multiple structural-pharmacokinetic challenges prevent its development into a clinical drug. Various structural modifications have been made to improve its drug profile. In this review, we focus on the methods adopted in the synthesis of asymmetric curcumin derivatives and their biological activities and forecast the future of this exciting class of compounds in the field of medicine.
    Matched MeSH terms: Acute Lung Injury/drug therapy
  6. Wong JJ, Tan HL, Lee SW, Chang KTE, Mok YH, Lee JH
    Pediatr Pulmonol, 2020 04;55(4):1000-1006.
    PMID: 32017471 DOI: 10.1002/ppul.24674
    OBJECTIVE: This study delineates the disease trajectory of patients with pediatric acute respiratory distress syndrome (PARDS) defined by the Pediatric Acute Lung Injury Consensus Conference (PALICC) definition, and evaluates the impact of comorbidities on outcomes.

    METHODS: This prospective study over November 2017-October 2019 was conducted in a single-center multidisciplinary pediatric intensive care unit (PICU) and included patients <21years of age with PARDS. Clinical history of those requiring mechanical ventilation for <3 days was interrogated and cases in which the diagnosis of PARDS were unlikely, identified. The impact of chronic comorbidities on clinical outcomes, in particular, pulmonary disease and immunosuppression, were analyzed.

    RESULTS: Eighty-five of 1272 PICU admissions (6.7%) met the criteria for PARDS and were included. Median age and oxygenation indexes were 2.8 (0.6, 8.3) years and 10.6 (7.6, 15.4), respectively. Overall mortality was 12 out of 85 (14.1%). Despite fulfilling criteria in 6/85 (7.1%), hypoxemia contributed by bronchospasm, mucus plugging, fluid overload, and atelectasis was quickly reversible and PARDS was unlikely in these patients. Comorbidities (57/85 [67.1%]) were not associated with worsened outcomes. However, pre-existing pulmonary disease and immunosuppression were associated with severe PARDS (12/20 [60.0%] vs 19/65 [29.2%]; P = .017), extracorporeal membrane oxygenation use (5/20 [25.0%] vs 3/65 [4.6%]; P = .016) and reduced ventilator free days (VFD) (15 [0, 19] vs 21 [6, 23]; P = .039), compared with those without them.

    CONCLUSION: A small percentage of children fulfilling the PALICC definition had quickly reversible hypoxemia with likely alternate pathophysiology to PARDS. Patients with pulmonary comorbidities and immunosuppression had a more severe course of PARDS compared with others.

    Matched MeSH terms: Acute Lung Injury
  7. Lee SW, Loh SW, Ong C, Lee JH
    Ann Transl Med, 2019 Oct;7(19):513.
    PMID: 31728366 DOI: 10.21037/atm.2019.09.32
    The objectives of this review are to describe the limitations of commonly used clinical outcomes [e.g., mortality, ventilation parameters, need for extracorporeal membrane oxygenation (ECMO), pediatric intensive care unit (PICU) and hospital length of stay (LOS)] in pediatric acute respiratory distress syndrome (PARDS) studies; and to explore other pertinent clinical outcomes that pediatric critical care practitioners should consider in future clinical practice and research studies. These include long-term pulmonary function, risk of pulmonary hypertension (PHT), nutrition status and growth, PICU-acquired weakness, neurological outcomes and neurocognitive development, functional status, health-related quality of life (HRQOL)], health-care costs, caregiver and family stress. PubMed was searched using the following keywords or medical subject headings (MESH): "acute lung injury (ALI)", "acute respiratory distress syndrome (ARDS)", "pediatric acute respiratory distress syndrome (PARDS)", "acute hypoxemia respiratory failure", "outcomes", "pediatric intensive care unit (PICU)", "lung function", "pulmonary hypertension", "growth", "nutrition', "steroid", "PICU-acquired weakness", "functional status scale", "neurocognitive", "psychology", "health-care expenditure", and "HRQOL". The concept of contemporary measure outcomes was adapted from adult ARDS long-term outcome studies. Articles were initially searched from existing PARDS articles pool. If the relevant measure outcomes were not found, where appropriate, we considered studies from non-ARDS patients within the PICU in whom these outcomes were studied. Long-term outcomes in survivors of PARDS were not follow-up in majority of pediatric studies regardless of whether the new or old definitions of ARDS in children were used. Relevant studies were scarce, and the number of participants was small. As such, available studies were not able to provide conclusive answers to most of our clinical queries. There remains a paucity of data on contemporary clinical outcomes in PARDS studies. In addition to the current commonly used outcomes, clinical researchers and investigators should consider examining these contemporary outcome measures in PARDS studies in the future.
    Matched MeSH terms: Acute Lung Injury
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links