Displaying publications 1 - 20 of 763 in total

Abstract:
Sort:
  1. Chua AS, Keeling PW
    World J Gastroenterol, 2006 May 07;12(17):2688-93.
    PMID: 16718754 DOI: 10.3748/wjg.v12.i17.2688
    Functional dyspepsia (FD) is a common disorder of yet uncertain etiology. Dyspeptic symptoms are usually meal related and suggest an association to gastrointestinal (GI) sensorimotor dysfunction. Cholecystokinin (CCK) is an established brain-gut peptide that plays an important regulatory role in gastrointestinal function. It inhibits gastric motility and emptying via a capsaicin sensitive vagal pathway. The effects on emptying are via its action on the proximal stomach and pylorus. CCK is also involved in the regulation of food intake. It is released in the gut in response to a meal and acts via vagal afferents to induce satiety. Furthermore CCK has also been shown to be involved in the pathogenesis of panic disorder, anxiety and pain. Other neurotransmitters such as serotonin and noradrenaline may be implicated with CCK in the coordination of GI activity. In addition, intravenous administration of CCK has been observed to reproduce the symptoms in FD and this effect can be blocked both by atropine and loxiglumide (CCK-A antagonist). It is possible that an altered response to CCK may be responsible for the commonly observed gastric sensorimotor dysfunction, which may then be associated with the genesis of dyspeptic symptoms.
    Matched MeSH terms: Cholecystokinin/antagonists & inhibitors
  2. Anasir MI, Ramanathan B, Poh CL
    Viruses, 2020 03 26;12(4).
    PMID: 32225021 DOI: 10.3390/v12040367
    Dengue virus (DENV) presents a significant threat to global public health with more than 500,000 hospitalizations and 25,000 deaths annually. Currently, there is no clinically approved antiviral drug to treat DENV infection. The envelope (E) glycoprotein of DENV is a promising target for drug discovery as the E protein is important for viral attachment and fusion. Understanding the structure and function of DENV E protein has led to the exploration of structure-based drug discovery of antiviral compounds and peptides against DENV infections. This review summarizes the structural information of the DENV E protein with regards to DENV attachment and fusion. The information enables the development of antiviral agents through structure-based approaches. In addition, this review compares the potency of antivirals targeting the E protein with the antivirals targeting DENV multifunctional enzymes, repurposed drugs and clinically approved antiviral drugs. None of the current DENV antiviral candidates possess potency similar to the approved antiviral drugs which indicates that more efforts and resources must be invested before an effective DENV drug materializes.
    Matched MeSH terms: Viral Envelope Proteins/antagonists & inhibitors*
  3. Zandi K, Teoh BT, Sam SS, Wong PF, Mustafa MR, Abubakar S
    Virol J, 2011;8:560.
    PMID: 22201648 DOI: 10.1186/1743-422X-8-560
    Dengue is a major mosquito-borne disease currently with no effective antiviral or vaccine available. Effort to find antivirals for it has focused on bioflavonoids, a plant-derived polyphenolic compounds with many potential health benefits. In the present study, antiviral activity of four types of bioflavonoid against dengue virus type -2 (DENV-2) in Vero cell was evaluated. Anti-dengue activity of these compounds was determined at different stages of DENV-2 infection and replication cycle. DENV replication was measured by Foci Forming Unit Reduction Assay (FFURA) and quantitative RT-PCR. Selectivity Index value (SI) was determined as the ratio of cytotoxic concentration 50 (CC50) to inhibitory concentration 50 (IC50) for each compound.
    Matched MeSH terms: RNA, Viral/antagonists & inhibitors
  4. Rodriguez JJ, Horvath CM
    Viral Immunol, 2004;17(2):210-9.
    PMID: 15279700
    Interferon (IFN) can activate Signal Transducer and Activator of Transcription (STAT) proteins to establish a cellular antiviral response and inhibit virus replication. Many viruses have evolved strategies to inhibit this antiviral mechanism, but paramyxoviruses are unique in their abilities to directly target the IFN-responsive STAT proteins. Hendra virus and Nipah virus (Henipaviruses) are recently emerged paramyxoviruses that are the causative agents of fatal disease outbreaks in Australia and peninsular Malaysia. Similar to other paramyxoviruses, Henipaviruses inhibit IFN signal transduction through a virus-encoded protein called V. Recent studies have shown that Henipavirus V proteins target STAT proteins by inducing the formation of cytoplasmically localized high molecular weight STAT-containing complexes. This sequestration of STAT1 and STAT2 prevents STAT activation and blocks antiviral IFN signaling. As the V proteins are important factors for host evasion, they represent logical targets for therapeutics directed against Henipavirus epidemics.
    Matched MeSH terms: Interferons/antagonists & inhibitors
  5. Chin LC, Achike FI, Mustafa MR
    Vascul. Pharmacol., 2007 Mar;46(3):223-8.
    PMID: 17126611 DOI: 10.1016/j.vph.2006.10.005
    Hydrogen peroxide (H(2)O(2)) contributes in the regulation of vascular tone, especially in pathological states. The role of H(2)O(2) and superoxide anion free radicals in angiotensin II (Ang II)-induced contraction of diabetic tissues was examined with the aim of elucidating the underlying mechanisms. Isometric tension in response to various drug treatments was measured in isolated superior mesenteric arteries of streptozotocin (STZ)-induced diabetic WKY rats using the Mulvany wire myograph. Compared to the normal (euglycaemic) arteries, the Ang II-induced contraction was significantly reduced in diabetic arteries. Superoxide dismutase (SOD; converts superoxide to H(2)O(2)) significantly reduced the contraction in both types of arteries -- an effect abolished by catalase (H(2)O(2) scavenger), suggesting that the SOD effect was mediated by H(2)O(2). Treatment with catalase had no effect on the Ang II contraction in euglycaemic arteries, but it raised the contraction in diabetic arteries to euglycaemic levels. This increase was similar to that observed with diabetic arteries incubated with L-NAME. Combined catalase and L-NAME treatment further enhanced the contraction in diabetic arteries, suggesting that the catalase effect was not mediated by nitric oxide (NO). The catalase effect was abolished by indomethacin treatment. These results suggest that attenuation of Ang II-induced contraction in diabetic tissues is modulated by endogenous H(2)O(2), the scavenging of which unmasks an indomethacin-sensitive (and therefore cyclooxygenase product-mediated) Ang II-induced contraction.
    Matched MeSH terms: Nitric Oxide Synthase/antagonists & inhibitors
  6. Sim SK, Tan YC, Tee JH, Yusoff AA, Abdullah JM
    Turk Neurosurg, 2015;25(4):617-24.
    PMID: 26242340 DOI: 10.5137/1019-5149.JTN.14035-15.1
    This study evaluated the neuroprotective effect of intrathecally infused paclitaxel in the prevention of motoneuron death and mitochondrial dysfunction following brachial plexus avulsion injury.
    Matched MeSH terms: Nitric Oxide Synthase Type I/antagonists & inhibitors*
  7. Suhaini S, Liew SZ, Norhaniza J, Lee PC, Jualang G, Embi N, et al.
    Trop Biomed, 2015 Sep;32(3):419-33.
    PMID: 26695202 MyJurnal
    Gleichenia truncata is a highland fern from the Gleicheniaceae family known for its traditional use among indigenous communities in Asia to treat fever. The scientific basis of its effect has yet to be documented. A yeast-based kinase assay conducted in our laboratory revealed that crude methanolic extract (CME) of G. truncata exhibited glycogen synthase kinase-3 (GSK3)-inhibitory activity. GSK3β is now recognized to have a pivotal role in the regulation of inflammatory response during bacterial infections. We have also previously shown that lithium chloride (LiCl), a GSK3 inhibitor suppressed development of Plasmodium berghei in a murine model of malarial infection. The present study is aimed at evaluating G. truncata for its anti-malarial and anti-inflammatory effects using in vivo malarial and melioidosis infection models respectively. In a four-day suppressive test, intraperitoneal injections of up to 250 mg/kg body weight (bw) G. truncata CME into P.berghei-infected mice suppressed parasitaemia development by >60%. Intraperitoneal administration of 150 mg/kg bw G. truncata CME into Burkholderia pseudomallei-infected mice improved survivability by 44%. G. truncata CME lowered levels of pro-inflammatory cytokines (TNF-α, IFN-γ) in serum and organs of B. pseudomallei-infected mice. In both infections, increased phosphorylations (Ser9) of GSK3β were detected in organ samples of animals administered with G. truncata CME compared to controls. Taken together, results from this study strongly suggest that the anti-malarial and anti-inflammatory effects elicited by G. truncata in part were mediated through inhibition of GSK3β. The findings provide scientific basis for the ethnomedicinal use of this fern to treat inflammation-associated symptoms.
    Matched MeSH terms: Glycogen Synthase Kinase 3/antagonists & inhibitors*
  8. Maniam P, Nurul Aiezzah Z, Mohamed R, Embi N, Hasidah MS
    Trop Biomed, 2015 Mar;32(1):36-48.
    PMID: 25801253
    Increased susceptibility of diabetics to melioidosis, a disease caused by the Burkholderia pseudomallei bacterium is believed to be attributed to dysfunction of the innate immune system. However, the underlying mechanism of the innate susceptibility is not well-understood. Glycogen synthase kinase-3β (GSK3β) plays an important role in the innate inflammatory response caused by bacterial pathogens. The present study was conducted to investigate the effects of GSK3β inhibition by LiCl on levels of pro- and anti-inflammatory cytokines; and the activity of transcription factor NF-κB in B. pseudomallei-infected peripheral blood mononuclear cells (PBMC) derived from diabetic-induced and normal Sprague Dawley rats. In addition, the effects of LiCl on intracellular bacterial counts were also investigated. Infection of PBMC from diabetic and normal rats with B. pseudomallei resulted in elevated levels of cytokines (TNF-α, IL-12 and IL-10) and phosphorylation of NF-κB in both cell types. Intracellular bacterial counts decreased with time in both cell types during infection. However bacterial clearance was less prominent in diabetic PBMC. Burkholderia pseudomallei infection also caused inactivation (Ser9 phosphorylation) of GSK3β in normal PBMC, an effect absent in infected diabetic PBMC. Inhibition of GSK3β by LiCl lowered the levels of pro-inflammatory cytokines (TNF-α and IL-12) in both normal and diabetic PBMC. Similarly, phosphorylated NF- κB (pNF-κB) levels in both cell types were decreased with LiCl treatment. Also, LiCl was able to significantly decrease the intracellular bacterial count in normal as well as diabetic PBMC. Interestingly, the levels of anti-inflammatory cytokine IL-10 in both normal and diabetic PBMC were further elevated with GSK3β inhibition. More importantly, GSK3β in infected diabetic PBMC was inactivated as in their non-diabetic counterparts upon LiCl treatment. Taken together, our results suggest that inhibition of dysregulated GSK3β in diabetic PBMC resulted in the inactivation of NF-κB and modulation of inflammatory cytokine levels. This is evidence that dysregulation of GSK3β is a contributing factor in the molecular basis of innate dysfunction and susceptibility of diabetic host to melioidosis infection.
    Matched MeSH terms: Glycogen Synthase Kinase 3/antagonists & inhibitors
  9. Rothan HA, Buckle MJ, Ammar YA, Mohammadjavad P, Shatrah O, Noorsaadah AR, et al.
    Trop Biomed, 2013 Dec;30(4):681-90.
    PMID: 24522138
    Various clinical symptoms are caused by dengue virus ranging from mild fever to severe hemorrhagic fever while there is no successful anti-dengue therapeutics available. Among different strategies towards identifying and developing anti-dengue therapeutics, testing anti-dengue properties of known drugs could represent an efficient strategy for which information of its medical approval, toxicity and side effects is readily available. In this study, we evaluated the antiviral activity of some medical compounds towards dengue NS2B-NS3 protease (DENV2 NS2B-NS3pro) as a target to inhibit dengue virus replication. Mefenamic acid, a non-steroid anti inflammatory drug and doxycycline, a derivative antibiotic of tetracycline both showed significant inhibition potential against DENV2 NS2B-NS3pro Ki values 32 ± 2 μM and 55 ± 5 μM respectively. The effective cytotoxic concentrations of 50% (CC50) against Vero cells were evaluated for mefenamic acid (150 ± 5 μM) and doxycycline (125 ± 4 μM). Concentrations lower than CC50 were used to test the inhibition potential of these compounds against DENV2 replication in Vero cells. The results showed significant reduction in viral load after applying mefenamic acid and doxycyline in concentration dependent manner. Mefenamic acid reduced viral RNA at EC50 of 32 ± 4 μM whilst doxycycline EC50 was 40 ± 3 μM. Mefenamic acid showed higher selectivity against dengue virus replication in vitro compared to doxycycline. These findings underline the need for further experimental and clinical studies on these drugs utilizing its anti-dengue and anti-inflammatory activities to attenuate the clinical symptoms of dengue infection.
    Matched MeSH terms: Viral Nonstructural Proteins/antagonists & inhibitors*; RNA Helicases/antagonists & inhibitors
  10. Maung KM, Lynn Z
    Trop Biomed, 2012 Dec;29(4):580-7.
    PMID: 23202603
    Snake bite has been regarded as an important health problem in Myanmar since early 1960's. In the recent years, there has been growing interest in alternative therapies and therapeutic use of natural products, especially those derive from plants. In Myanmar and Indian traditional medicine, various plants have used as a remedy for treating snake bite. The present study was carried out to evaluate the effects of alcohol extract of Tamarind (Tamarindus indica Linn.) seed on some biologic properties of Russell's viper (Daboia russelli siamensis) venom (RVV). The Phospholipase A2 (PLA2) enzyme, coagulase enzyme and caseinolytic enzyme activities of Russell's viper venom (RVV) were reduced when mixed and incubated with the extract. When the RVV and the different amount of extracts were preincubated and injected intramuscularly into mice, all of them survived, but all the mice in the control group died. On the other hand, when RVV were injected first followed by the extract into mice, all of them died. If the extract was injected near the site where Russell's viper venom was injected, all the mice survived for more than 24 hours and the survival time prolonged but they all died within 96 hours. In conclusion, according to the results obtained, the extract neutralizes some biologic properties of the Russell's viper venom and prolonged the survival time if the extract was injected near the site where the Russell's viper venom was injected.
    Matched MeSH terms: Coagulase/antagonists & inhibitors; Metalloendopeptidases/antagonists & inhibitors
  11. Tay TF, Maheran M, Too SL, Hasidah MS, Ismail G, Embi N
    Trop Biomed, 2012 Dec;29(4):551-67.
    PMID: 23202600
    The disease melioidosis, caused by the soil bacteria Burkholderia pseudomallei, often manifests as acute septicemia with high fatality. Glycogen synthase kinase-3β (GSK3β) plays a key role during the inflammatory response induced by bacteria. We used a murine model of acute melioidosis to investigate the effects of LiCl, a GSK3 inhibitor on experimental animal survivability as well as TNF-α, IL-1β, IFN-γ, IL-10 and IL-1Ra cytokine levels in blood, lung, liver and spleen of B. pseudomallei-infected mice. Our results showed that administration of 100 μg/g LiCl improved survivability of mice infected with 5 X LD50 of B. pseudomallei. Bacterial counts in spleen, liver and lungs of infected mice administered with LiCl were lower than non-treated controls. Our data also revealed that GSK3β is phosphorylated in the spleen, liver and lung of animals infected with B. pseudomallei. However in infected animals administered with LiCl, higher levels of pGSK3 were detected in the organs. Levels of proinflammatory cytokines (TNF-α, IL-1β and IFN-γ) and anti-inflammatory cytokines (IL-10 and IL-1Ra) in sera and organs tested were elevated significantly following B. pseudomallei infection. With GSK3β inhibition, pro-inflammatory cytokines (TNF-α, IFN-γ, IL-1β) were significantly decreased in all the samples tested whilst the levels of anti-inflammatory cytokines, IL-10 (spleen and lung) and IL-1Ra (spleen, liver and sera) were further elevated. This study represents the first report implicating GSK3β in the modulation of cytokine production during B. pseudomallei infection thus reiterating the important role of GSK3β in the inflammatory response caused by bacterial pathogens.
    Matched MeSH terms: Glycogen Synthase Kinase 3/antagonists & inhibitors*
  12. Nurul Aiezzah Z, Noor E, Hasidah MS
    Trop Biomed, 2010 Dec;27(3):624-31.
    PMID: 21399604 MyJurnal
    Malaria, caused by the Plasmodium parasite is still a health problem worldwide due to resistance of the pathogen to current anti-malarials. The search for new anti-malarial agents has become more crucial with the emergence of chloroquine-resistant Plasmodium falciparum strains. Protein kinases such as mitogen-activated protein kinase (MAPK), MAPK kinase, cyclin-dependent kinase (CDK) and glycogen synthase kinase- 3(GSK-3) of parasitic protozoa are potential drug targets. GSK-3 is an enzyme that plays a vital role in multiple cellular processes, and has been linked to pathogenesis of several diseases such as type II diabetes and Alzheimer's disease. In the present study, the antiplasmodial property of LiCl, a known GSK-3 inhibitor, was evaluated in vivo for its antimalarial effect against mice infected with Plasmodium berghei. Infected ICR mice were intraperitoneally administered with LiCl for four consecutive days before (prophylactic test) and after (suppressive test) inoculation of P. berghei-parasitised erythrocytes. Results from the suppressive test (post-infection LiCl treatment) showed inhibition of erythrocytic parasitemia development by 62.06%, 85.67% and 85.18% as compared to nontreated controls for the 100 mg/kg, 300 mg/kg and 600 mg/kg dosages respectively. Both 300 mg/kg and 600 mg/kg LiCl showed similar significant (P<0.05) suppressive values to that obtained with chloroquine-treated mice (86% suppression). The prophylactic test indicated a significantly (P<0.05) high protective effect on mice pre-treated with LiCl with suppression levels relatively comparable to chloroquine (84.07% and 86.26% suppression for the 300 mg/kg and 600 mg/kg LiCl dosages respectively versus 92.86% suppression by chloroquine). In both the suppressive and prophylactic tests, LiCl-treated animals survived longer than their non-treated counterparts. Mortality of the non-treated mice was 100% within 6 to 7 days of parasite inoculation whereas mice administered with LiCl survived beyond 9 days. Healthy non-infected mice administered with 600 mg/ kg LiCl for four consecutive days also showed decreased mortality compared to animals receiving lower doses of LiCl; three of the seven mice intraperitoneally injected with the former dose of LiCl did not survive more than 24 h after administration of LiCl whereas animals given the lower LiCl doses survived beyond four days of LiCl administration. To date, no direct evidence of anti-malarial activity in vivo or in vitro has been reported for LiCl. Evidence of anti-plasmodial activity of lithium in a mouse infection model is presented in this study.
    Matched MeSH terms: Glycogen Synthase Kinase 3/antagonists & inhibitors
  13. Fung SY, Tan NH, Sim SM
    Trop Biomed, 2010 Dec;27(3):366-72.
    PMID: 21399576 MyJurnal
    The protective effects of Mucuna pruriens seed extract (MPE) against the cardio-respiratory depressant and neuromuscular paralytic effects induced by injection of Calloselasma rhodostoma (Malayan pit viper) venom in anaesthetized rats were investigated. While MPE pretreatment did not reverse the inhibitory effect of the venom on the gastrocnemius muscle excitability, it significantly attenuated the venom-induced cardio-respiratory depressant effects (p < 0.05). The protection effects may have an immunological mechanism, as indicated by the presence of several proteins in the venom that are immunoreactive against anti-MPE. However, we cannot rule out the possibility that the pretreatment may exert a direct, non-immunological protective action against the venom.
    Matched MeSH terms: Crotalid Venoms/antagonists & inhibitors*
  14. Fung SY, Tan NH, Liew SH, Sim SM, Aguiyi JC
    Trop Biomed, 2009 Apr;26(1):80-4.
    PMID: 19696731
    Seed of Mucuna pruriens (Velvet beans) has been prescribed by traditional medicine practitioners in Nigeria as a prophylactic oral antisnake remedy. In the present studies, we investigated the protective effects of M. pruriens seed extract (MPE) against histopathological changes induced by intravenous injection of Naja sputatrix (Malayan cobra) venom in rats pretreated with the seed extract. Examination by light microscope revealed that the venom induced histopathological changes in heart and blood vessels in liver, but no effect on brain, lung, kidney and spleen. The induced changes were prevented by pretreatment of the rats with MPE. Our results suggest that MPE pretreatment protects rat heart and liver blood vessels against cobra venom-induced damages.
    Matched MeSH terms: Cobra Venoms/antagonists & inhibitors*
  15. Hassan WRM, Basir R, Ali AH, Embi N, Sidek HM
    Trop Biomed, 2019 Sep 01;36(3):776-791.
    PMID: 33597499
    Malarial pathogenesis involves among others, uncontrolled or excessive cytokine production arising from dysregulated immune responses mounted by the host to eliminate the plasmodial parasite. The ubiquitous serine/threonine kinase, glycogen synthase kinase3β (GSK3β) is a crucial regulator of the balance between pro- and anti-inflammatory cytokine productions in the inflammatory response to pathogenic infections. Andrographolide, a bioactive compound in Andrographis paniculata, displays GSK3- inhibitory effects. A previous study elsewhere has shown that this compound has antimalarial activity but the molecular basis of its action is yet to be elucidated. Here we aimed to study the anti-malarial activity of andrographolide in a murine model of malarial infection to investigate whether its mechanism of action involves cytokine modulation and inhibition of GSK3β. Andrographolide showed strong and selective anti-plasmodial activity (IC50 = 13.70±0.71 µM; SI = 30.43) when tested against cultures of P. falciparum 3D7. Intraperitoneal administration of andrographolide (5 mg/kg body weight (bw)) into P. berghei NK65-infected ICR mice resulted in chemo-suppression of 60.17±2.12%, and significantly (P<0.05) improved median survival time of infected mice compared to nontreated control. In addition, andrographolide treatment significantly (P<0.05) decreased the level of serum pro-inflammatory cytokine, IFN-γ (1.4-fold) whilst the anti-inflammatory cytokines, IL-10 and IL-4 were increased 2.3- and 2.6-fold respectively. Western blot analyses revealed that andrographolide treatment of P. berghei NK65-infected mice resulted in an increased level of phosphorylated GSK3β (Ser9) in liver of infected mice. Andrographolide administration also decreased the levels of phosphorylated NF-κB p65 (Ser536) and phosphorylated Akt (Ser473) in liver of malaria- infected animals. Taken together, our findings demonstrate that the cytokine-modulating effect of andrographolide in experimental malarial infection involves at least in part inhibition of NF-κB activation as a consequence of GSK3β inhibition. Based on its cytokine-modulating effects, andrographolide is thus a plausible candidate for adjunctive therapy in malaria subject to clinical evaluations.
    Matched MeSH terms: Glycogen Synthase Kinase 3 beta/antagonists & inhibitors
  16. Mohammed A, Velu AB, Al-Hakami AM, Meenakshisundaram B, Esther P, Abdelwahid SA, et al.
    Trop Biomed, 2020 Dec 01;37(4):1062-1073.
    PMID: 33612758 DOI: 10.47665/tb.37.4.1062
    Pandemic H1N1 influenza virus respiratory illness has become an inevitable global health concern. With antigenic drift, it becomes necessary to have drugs over tailor-made HIN1 vaccine every year. In the current study, we screened many Piperine derivative in which, N-5-(3,4-dimethoxyphenyl)-2E,4E-pentadienylpiperidine (AB05) and was further studied for anti-H1N1influenza virus activity and compared with other stains in-vitro on MDCK cell line. Initial cytotoxic doses of AB05 for the MDCK cell line were > 25µM. The results showed a dose-dependent reduction of the viral plaque's in the adsorption assay with EC50 of 0.33 µM. The mechanism of AB05 was by inhibition of matured viral release as evaluated by the time of virus addition with incubation of 6-10 hours. With the promising H1N1 virucidal activity of AB05, we included various strains of human influenza virus to screen AB05 inhibition of Neuraminidase (NA). The result showed 70% NA inhibition in WSN (H1N1), 90% in H3N2 and Influenza B and 49% in Tamiflu resistant H1N1). Further our In silco docking studies substantiated experimental results by showing the difference in binding and cooperation between H1N1 and N3N2. Together these observations illustrate that Piperine derivative AB05 is a promising lead molecule which needs further evaluation in animal models.
    Matched MeSH terms: Neuraminidase/antagonists & inhibitors*; Viral Proteins/antagonists & inhibitors*
  17. Aizuddin NNF, Ganesan N, Ng WC, Ali AH, Ibrahim I, Basir R, et al.
    Trop Biomed, 2020 Dec 01;37(4):1105-1116.
    PMID: 33612762 DOI: 10.47665/tb.37.4.1105
    Malaria is a life-threatening disease caused by the Plasmodium sp. parasite. Infection results in heightened pro-inflammatory response which contributes to the pathophysiology of the disease. To mitigate the overwhelming cytokine response, host-directed therapy is a plausible approach. Glycogen synthase kinase-3β (GSK3β), a serine/threonine kinase plays a pivotal role in the regulation of inflammatory response during pathogenic infections. The present study was conducted to investigate the chemo-suppressive and cytokine-modulating effects of insulin administration in malaria-infected mice and the involvement of GSK3β. Intraperitoneal administrations of 0.3 and 0.5 U/kg body weight insulin each for four consecutive days into Plasmodium berghei NK65 (PbN)-infected mice resulted in chemo-suppression exceeding 60% and improved median survival time of infected mice (20.5 days and 19 days respectively compared to 15.5 days for non-treated control). Western analysis revealed that pGSK3β (Ser9) intensity in brain samples from insulin-treated (0.3 and 0.5 U/kg body weight) infected mice each were 0.6 and 2.2 times respectively than that in control. In liver samples, pGSK3β (Ser9) intensity from insulin-treated infected mice were significantly higher (4.8 and 16.1 fold for 0.3 and 0.5 U/kg bw respectively) than that in control. Insulin administration decreased both brain and liver pNF-κB p65 (Ser536) intensities (to 0.8 and 0.6 times for 0.3 U/kg bw insulin; and to 0.2 and 0.1 times for 0.5 U/kg bw insulin respectively compared to control). Insulin treatment (0.5 U/kg bw) also significantly decreased the serum levels of pro-inflammatory cytokines (TNF-α (3.3 times) and IFN-γ (4.9 times)) whilst significantly increasing the levels of anti-inflammatory cytokines (IL-4 (4.9 fold) and IL-10 (2.1 fold)) in PbN-infected mice. Results from this study demonstrated that the cytokinemodulating effects of insulin at least in part involve inhibition of GSK3β and consequent inhibition of the activation of NF-κB p65 suggesting insulin as a potential adjunctive therapeutic for malaria.
    Matched MeSH terms: Glycogen Synthase Kinase 3 beta/antagonists & inhibitors*
  18. Timothy MR, Ibrahim YKE, Muhammad A, Chechet GD, Aimola IA, Mamman M
    Trop Biomed, 2021 Mar 01;38(1):94-101.
    PMID: 33797530 DOI: 10.47665/tb.38.1.016
    Trypanothione reductase is a key enzyme that upholds the redox balance in hemoflagellate protozoan parasites such as T. congolense. This study aims at unraveling the potency of Kolaviron against trypanothione reductase in T. congolense infection using Chrysin as standard. The experiment was performed using three different approaches; in silico, in vitro and in vivo. Kolaviron and Chrysin were docked against trypanothione reductase, revealing binding energies (-9.3 and -9.0 kcal/mol) and Ki of 0.211μM and 0.151μM at the active site of trypanothione reductase as evident from the observed strong hydrophobic/hydrogen bond interactions. Parasitized blood was used for parasite isolation and trypanothione reductase activity assay using standard protocol. Real-time PCR (qPCR) assay was implored to monitor expression of trypanothione reductase using primers targeting the 177-bp repeat satellite DNA in T. congolense with SYBR Green to monitor product accumulation. Kolaviron showed IC50 values of 2.64μg/ml with % inhibition of 66.78 compared with Chrysin with IC50 values of 1.86μg/ml and % inhibition of 53.80. In vivo studies following the administration of these compounds orally after 7 days post inoculation resulted in % inhibition of Chrysin (57.67) and Kolaviron (46.90). Equally, Kolaviron relative to Chrysin down regulated the expression trypanothione reductase gene by 1.352 as compared to 3.530 of the infected group, in clear agreement with the earlier inhibition observed at the fine type level. Overall, the findings may have unraveled the Kolaviron potency against Trypanosoma congolense infection in rats.
    Matched MeSH terms: NADH, NADPH Oxidoreductases/antagonists & inhibitors*
  19. Leong PK, Tan NH, Fung SY, Sim SM
    Trans R Soc Trop Med Hyg, 2012 Dec;106(12):731-7.
    PMID: 23062608 DOI: 10.1016/j.trstmh.2012.07.009
    Cross neutralisation of venoms by antivenom raised against closely-related species has been well documented. The spectrum of paraspecific protection of antivenom raised against Asiatic Naja and Bungarus (krait) venoms, however, has not been fully investigated. In this study, we examined the cross neutralisation of venoms from common Southeast Asian cobras and kraits by two widely used polyvalent antivenoms produced in India: Vins Polyvalent Antivenom (VPAV) and Bharat Polyvalent Antivenom (BPAV), using both in vitro and in vivo mouse protection assays. BPAV was only moderately effective against venoms of N. kaouthia (Thailand) and N. sumatrana, and either very weakly effective or totally ineffective against the other cobra and krait venoms. VPAV, on the other hand, neutralised effectively all the Southeast Asian Naja venoms tested, as well as N. naja, B. candidus and Ophiophagus hannah venoms, but the potency ranges from effective to weakly effective. In an in vivo rodent model, VPAV also neutralised the lethality of venoms from Asiatic Naja and B. candidus. In anesthetised rat studies, both antivenoms effectively protected against the N. kaouthia venom-induced cardio-respiratory depressant and neuromuscular blocking effects. Overall, our results suggest that VPAV could be used as alternative antivenom for the treatment of elapid envenomation in Southeast Asian regions including Malaysia, Thailand and certain regions of Indonesia.
    Matched MeSH terms: Elapid Venoms/antagonists & inhibitors*
  20. Tan CH, Tan NH, Tan KY, Kwong KO
    Toxins (Basel), 2015 Feb;7(2):572-81.
    PMID: 25690691 DOI: 10.3390/toxins7020572
    Sea snake envenomation is a serious occupational hazard in tropical waters. In Malaysia, the beaked sea snake (Hydrophis schistosus, formerly known as Enhydrina schistosa) and the spine-bellied sea snake (Hydrophis curtus, formerly known as Lapemis curtus or Lapemis hardwickii) are two commonly encountered species. Australian CSL sea snake antivenom is the definitive treatment for sea snake envenomation; it is unfortunately extremely costly locally and is not widely available or adequately stocked in local hospitals. This study investigated the cross-neutralizing potential of three regionally produced anti-cobra antivenoms against the venoms of Malaysian H. schistosus and H. curtus. All three antivenoms conferred paraspecific protection from sea snake venom lethality in mice, with potency increasing in the following order: Taiwan bivalent antivenom < Thai monocled cobra monovalent antivenom < Thai neuro polyvalent antivenom (NPAV). NPAV demonstrated cross-neutralizing potencies of 0.4 mg/vial for H. schistosus venom and 0.8 mg/vial for H. curtus, which translates to a dose of less than 20 vials of NPAV to neutralize an average amount of sea snake venom per bite (inferred from venom milking). The cross-neutralization activity was supported by ELISA cross-reactivity between NPAV and the venoms of H. schistosus (58.4%) and H. curtus (70.4%). These findings revealed the potential of NPAV as a second-line treatment for sea snake envenomation in the region. Further profiling of the cross-neutralization activity should address the antivenomic basis using purified toxin-based assays.
    Matched MeSH terms: Elapid Venoms/antagonists & inhibitors*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links