Displaying all 5 publications

Abstract:
Sort:
  1. Alshagga MA, Alshawsh MA, Seyedan A, Alsalahi A, Pan Y, Mohankumar SK, et al.
    Ann Nutr Metab, 2016;69(3-4):200-211.
    PMID: 27871070 DOI: 10.1159/000452895
    BACKGROUND: Khat (Catha edulis) is a plant that is deeply rooted in the cultural life of East African and Southwestern Arabian populations. Prevalent traditional beliefs about khat are that the plant has an effect on appetite and body weight.

    SUMMARY: This review assesses the accumulated evidences on the mutual influence of monoamines, hormones and neuropeptides that are linked to obesity. A few anti-obesity drugs that exert their mechanisms of action through monoamines are briefly discussed to support the notion of monoamines being a critical target of drug discovery for new anti-obesity drugs. Subsequently, the review provides a comprehensive overview of central dopamine and serotonin changes that are associated with the use of khat or its alkaloids. Then, all the studies on khat that describe physical, biochemical and hormonal changes are summarised and discussed in depth.

    CONCLUSION: The reviewed studies provide relatively acceptable evidence that different khat extracts or cathinone produces changes in terms of weight, fat mass, appetite, lipid biochemistry and hormonal levels. These changes are more pronounced at higher doses and long durations of intervention. The most suggested mechanism of these changes is the central action that produces changes in the physiology of dopamine and serotonin. Nonetheless, there are a number of variations in the study design, including species, doses and durations of intervention, which makes it difficult to arrive at a final conclusion about khat regarding obesity, and further studies are necessary in the future to overcome these limitations.

    Matched MeSH terms: Appetite/drug effects*
  2. Kazemipoor M, Hamzah S, Hajifaraji M, Radzi CW, Cordell GA
    Phytother Res, 2016 Jun;30(6):981-7.
    PMID: 26988309 DOI: 10.1002/ptr.5603
    Following the current 'Globesity' trend, there is an increasing demand for alternative natural therapies for weight management. Numerous phytoconstituents reduce body weight through suppressing appetite and reducing food intake. Caraway (Carum carvi L.) is one of the medicinal plants that is traditionally used for weight loss. In this study, the appetite-suppressing effects of caraway aqueous extract (CAE) on 70 aerobically trained, overweight, and obese women were examined in a triple-blind, placebo-controlled, clinical study. Subjects were randomly allocated into placebo and experimental groups and consumed either 30 mL/day of CAE or placebo without changing their diet or physical activity over a period of 90 days. Calorie and macronutrient intake and anthropometric indices were measured before and after the intervention. In addition, appetite changes were assessed through a visual analog scale and an ad libitum pizza test. After the intervention, the results showed a significant reduction in appetite levels and carbohydrate intake of the experimental group compared with the placebo group. All of the anthropometric indices were reduced significantly in CAE compared with placebo group (p 
    Matched MeSH terms: Appetite/drug effects
  3. Greenwood MP, Greenwood M, Paton JF, Murphy D
    PLoS One, 2014;9(8):e104802.
    PMID: 25111786 DOI: 10.1371/journal.pone.0104802
    Salt appetite, the primordial instinct to favorably ingest salty substances, represents a vital evolutionary important drive to successfully maintain body fluid and electrolyte homeostasis. This innate instinct was shown here in Sprague-Dawley rats by increased ingestion of isotonic saline (IS) over water in fluid intake tests. However, this appetitive stimulus was fundamentally transformed into a powerfully aversive one by increasing the salt content of drinking fluid from IS to hypertonic saline (2% w/v NaCl, HS) in intake tests. Rats ingested HS similar to IS when given no choice in one-bottle tests and previous studies have indicated that this may modify salt appetite. We thus investigated if a single 24 h experience of ingesting IS or HS, dehydration (DH) or 4% high salt food (HSD) altered salt preference. Here we show that 24 h of ingesting IS and HS solutions, but not DH or HSD, robustly transformed salt appetite in rats when tested 7 days and 35 days later. Using two-bottle tests rats previously exposed to IS preferred neither IS or water, whereas rats exposed to HS showed aversion to IS. Responses to sweet solutions (1% sucrose) were not different in two-bottle tests with water, suggesting that salt was the primary aversive taste pathway recruited in this model. Inducing thirst by subcutaneous administration of angiotensin II did not overcome this salt aversion. We hypothesised that this behavior results from altered gene expression in brain structures important in thirst and salt appetite. Thus we also report here lasting changes in mRNAs for markers of neuronal activity, peptide hormones and neuronal plasticity in supraoptic and paraventricular nuclei of the hypothalamus following rehydration after both DH and HS. These results indicate that a single experience of drinking HS is a memorable one, with long-term changes in gene expression accompanying this aversion to salty solutions.
    Matched MeSH terms: Appetite/drug effects*
  4. Ramiah SK, Atta Awad E, Hemly NIM, Ebrahimi M, Joshua O, Jamshed M, et al.
    J Anim Sci, 2020 Oct 01;98(10).
    PMID: 32936879 DOI: 10.1093/jas/skaa300
    This study was conducted to explore the effect of the zinc oxide nanoparticles (ZnONPs) supplement on the regulatory appetite and heat stress (HS) genes in broiler chickens raised under high or normal ambient temperatures. In this study, 240 one-day-old male broiler chicks (Cobb 500) were randomly assigned to 48 battery cages. From day 1, these 48 cages were randomly subjected to four different treatment strategies: Control (wherein, their basal diet included 60 mg/kg of ZnO), ZNONPs 40 (wherein basal diet included 40 mg/kg of ZnONPs), ZnONPs 60 (basal diet included 60 mg/kg of ZnONPs), and ZnONPs 100 (basal diet included 100 mg/kg of ZnONPs). Thereafter, from day 22 to 42, the chickens from each dietary treatment group were subjected to different temperature stresses either normal (23 ± 1 °C constant) or HS (34 ± 1 °C for 6 h/d), which divided them into eight different treatment groups. Our findings revealed that dietary ZnONPs altered the gene expression of cholecystokinin (ileum), heat stress proteins (HSP) 70 (jejunum and ileum), and HSP 90 (duodenum, jejunum, and ileum). The gene expression of ghrelin was affected by the interaction between the ZnONPs concentration and temperature in the duodenum and stomach. More studies are required to elucidate its complex physiological and biochemical functions of the regulation of gene expression within the intestine in heat-stressed broiler chickens.
    Matched MeSH terms: Appetite/drug effects*
  5. Daud NM, Ismail NA, Thomas EL, Fitzpatrick JA, Bell JD, Swann JR, et al.
    Obesity (Silver Spring), 2014 Jun;22(6):1430-8.
    PMID: 24715424 DOI: 10.1002/oby.20754
    OBJECTIVE: To investigate the effect of nutrient stimulation of gut hormones by oligofructose supplementation on appetite, energy intake (EI), body weight (BW) and adiposity in overweight and obese volunteers.

    METHODS: In a parallel, single-blind and placebo-controlled study, 22 healthy overweight and obese volunteers were randomly allocated to receive 30 g day(-1) oligofructose or cellulose for 6 weeks following a 2-week run-in. Subjective appetite and side effect scores, breath hydrogen, serum short chain fatty acids (SCFAs), plasma gut hormones, glucose and insulin concentrations, EI, BW and adiposity were quantified at baseline and post-supplementation.

    RESULTS: Oligofructose increased breath hydrogen (P 

    Matched MeSH terms: Appetite/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links