Displaying all 6 publications

Abstract:
Sort:
  1. John CM, Khaddaj Mallat R, Mishra RC, George G, Singh V, Turnbull JD, et al.
    Pharmacol Res, 2020 01;151:104539.
    PMID: 31707036 DOI: 10.1016/j.phrs.2019.104539
    Aging represents an independent risk factor for the development of cardiovascular disease, and is associated with complex structural and functional alterations in the vasculature, such as endothelial dysfunction. Small- and intermediate-conductance, Ca2+-activated K+ channels (KCa2.3 and KCa3.1, respectively) are prominently expressed in the vascular endothelium, and pharmacological activators of these channels induce robust vasodilation upon acute exposure in isolated arteries and intact animals. However, the effects of prolonged in vivo administration of such compounds are unknown. In our study, we hypothesized that such treatment would ameliorate aging-related cardiovascular deficits. Aged (∼18 months) male Sprague Dawley rats were treated daily with either vehicle or the KCa channel activator SKA-31 (10 mg/kg, intraperitoneal injection; n = 6/group) for 8 weeks, followed by echocardiography, arterial pressure myography, immune cell and plasma cytokine characterization, and tissue histology. Our results show that SKA-31 administration improved endothelium-dependent vasodilation, reduced agonist-induced vascular contractility, and prevented the aging-associated declines in cardiac ejection fraction, stroke volume and fractional shortening, and further improved the expression of endothelial KCa channels and associated cell signalling components to levels similar to those observed in young male rats (∼5 months at end of study). SKA-31 administration did not promote pro-inflammatory changes in either T cell populations or plasma cytokines/chemokines, and we observed no overt tissue histopathology in heart, kidney, aorta, brain, liver and spleen. SKA-31 treatment in young rats had little to no effect on vascular reactivity, select protein expression, tissue histology, plasma cytokines/chemokines or immune cell properties. Collectively, these data demonstrate that administration of the KCa channel activator SKA-31 improved aging-related cardiovascular function, without adversely affecting the immune system or promoting tissue toxicity.
    Matched MeSH terms: Arterial Pressure/drug effects*
  2. Loh SY, Salleh N
    Physiol Int, 2017 Mar 01;104(1):25-34.
    PMID: 28361574 DOI: 10.1556/2060.104.2017.1.3
    Introduction Testosterone plays an important role in the blood pressure regulation. However, information with regard to the effect of this hormone on blood pressure in normotensive and hypertensive conditions is limited. Therefore, in this study, the relationship between plasma testosterone level and mean arterial pressure (MAP) was investigated under these conditions. Methods Normotensive Wistar-Kyoto (WKY) and hypertensive Spontaneous Hypertensive (SHR) male and female rats were gonadectomized with female rats treated with testosterone. Estrous cycle stages of intact female rats of both strains were identified by vaginal smear. Pressure in the carotid artery of anesthetized rats was measured via direct cannulation technique. The blood was withdrawn for plasma testosterone level measurement by enzyme-linked immunosorbent assay. Results Treatment of ovariectomized female WKY and SHR rats with testosterone for 6-week duration has resulted in MAP to increase (P 
    Matched MeSH terms: Arterial Pressure/drug effects*
  3. Ahmad A, Sattar MA, Rathore HA, Abdulla MH, Khan SA, Abdullah NA, et al.
    Can J Physiol Pharmacol, 2014 Dec;92(12):1029-35.
    PMID: 25403946 DOI: 10.1139/cjpp-2014-0236
    This study investigated the role of α1D-adrenoceptor in the modulation of renal haemodynamics in rats with left ventricular hypertrophy (LVH). LVH was established in Wistar-Kyoto (WKY) rats with isoprenaline (5.0 mg · (kg body mass)(-1), by subcutaneous injection every 72 h) and caffeine (62 mg · L(-1) in drinking water, daily for 14 days). Renal vasoconstrictor responses were measured for noradrenaline (NA), phenylephrine (PE), and methoxamine (ME) before and immediately after low or high dose intrarenal infusions of BMY 7378, a selective α1D-adrenoceptor blocker. The rats with LVH had higher mean arterial blood pressure and circulating NA levels, but lower renal cortical blood perfusion compared with the control group (all P < 0.05). In the LVH group, the magnitude of the renal vasoconstrictor response to ME was blunted, but not the response to NA or PE (P < 0.05), compared with the control group (LVH vs. C, 38% vs. 50%). The magnitude of the drop in the vasoconstrictor responses to NA, PE, and ME in the presence of a higher dose of BMY 7378 was significantly greater in the LVH group compared with the control group (LVH vs. C, 45% vs. 25% for NA, 52% vs. 33% for PE, 66% vs. 53% for ME, all P < 0.05). These findings indicate an impaired renal vasoconstrictor response to adrenergic agonists during LVH. In addition, the α1D-adrenoceptor subtype plays a key role in the modulation of vascular responses in this diseased state.
    Matched MeSH terms: Arterial Pressure/drug effects
  4. Poh TF, Ng HK, Hoe SZ, Lam SK
    J Cardiovasc Pharmacol, 2013 May;61(5):378-84.
    PMID: 23328388 DOI: 10.1097/FJC.0b013e31828685b3
    Previous studies showed that Gynura procumbens reduced blood pressure by blocking calcium channels and inhibiting the angiotensin-converting enzyme activity. The present experiments were to further explore the effects and mechanisms of a purer aqueous fraction (FA-I) of G. procumbens on angiotensin I (Ang I)-induced and angiotensin II (Ang II)-induced contraction of aortic rings and also on the bradykinin (BK) effect on cardiovascular system. Rat aortic rings suspended in organ chambers were used to investigate the vascular reactivity of FA-I. Effect of FA-I on BK was studied by in vitro and in vivo methods. Results show that FA-I significantly (P < 0.05) decreased the contraction evoked by Ang I and Ang II. In the presence of indomethacin (10 µM) or N-nitro-L-arginine methyl ester (0.1 µM), the inhibitory effect of FA-I on Ang II-induced contraction of aortic rings was reduced. Besides, FA-I potentiated the vasorelaxant effect and enhanced the blood pressure-lowering effect of BK. In conclusion, FA-I reduced the contraction evoked by Ang II probably via the endothelium-dependent pathways, which involve activation of the release of nitric oxide and prostaglandins. The inhibition of angiotensin-converting enzyme activity by FA-I may contribute to the potentiation of the effects of BK on cardiovascular system.
    Matched MeSH terms: Arterial Pressure/drug effects
  5. Das S, Hamsi MA, Kamisah Y, Qodriyah HMS, Othman F, Emran A, et al.
    Pak J Pharm Sci, 2017 Sep;30(5):1609-1615.
    PMID: 29084680
    Consumption of corn oil for cooking purpose is gaining popularity. The present study examined the effect of heated corn oil on blood pressure and its possible mechanism in experimental rats. Thirty male Sprague-Dawley rats were randomly divided into 5 groups and were fed with the following diets, Group I was fed with basal diet only; whereas group II,III,IV and V were fed with basal diet fortified with 15% (w/w) either fresh, once-heated, five-times-heated or ten-times-heated corn oil, respectively for 16 weeks. Body weight, blood pressure were measured at baseline and weekly interval for 16 weeks. Inflammatory biomarkers which included soluble intracellular adhesion molecules (sICAM), soluble vascular adhesion molecules (sVCAM) and C reactive protein (CRP), were measured at baseline and the end of 16 weeks. The rats were sacrificed and thoracic aorta was taken for measurement of vascular reactivity. There was significant increase in the blood pressure in the groups fed with heated once, five-times (5HCO) and ten-times-heated corn oil (10-HCO) compared to the control. The increase in the blood pressure was associated with an increase in CRP, sICAM and sVCAM, reduction in vasodilatation response to acetylcholine and greater vasoconstriction response to phenylephrine. The results suggest that repeatedly heated corn oil causes elevation in blood pressure, vascular inflammation which impairs vascular reactivity thereby predisposing to hypertension. There is a need to educate people not to consume corn oil in a heated state.
    Matched MeSH terms: Arterial Pressure/drug effects*
  6. Ling WC, Mustafa MR, Vanhoutte PM, Murugan DD
    Vascul Pharmacol, 2018 03;102:11-20.
    PMID: 28552746 DOI: 10.1016/j.vph.2017.05.003
    AIM: Endothelial dysfunction accompanied by an increase in oxidative stress is a key event leading to hypertension. As dietary nitrite has been reported to exert antihypertensive effect, the present study investigated whether chronic oral administration of sodium nitrite improves vascular function in conduit and resistance arteries of hypertensive animals with elevated oxidative stress.

    METHODS: Sodium nitrite (50mg/L) was given to angiotensin II-infused hypertensive C57BL/6J (eight to ten weeks old) mice for two weeks in the drinking water. Arterial systolic blood pressure was measured using the tail-cuff method. Vascular responsiveness of isolated aortae and renal arteries was studied in wire myographs. The level of nitrite in the plasma and the cyclic guanosine monophosphate (cGMP) content in the arterial wall were determined using commercially available kits. The production of reactive oxygen species (ROS) and the presence of proteins (nitrotyrosine, NOx-2 and NOx-4) involved in ROS generation were evaluated with dihydroethidium (DHE) fluorescence and by Western blotting, respectively.

    RESULTS: Chronic administration of sodium nitrite for two weeks to mice with angiotensin II-induced hypertension decreased systolic arterial blood pressure, reversed endothelial dysfunction, increased plasma nitrite level as well as vascular cGMP content. In addition, sodium nitrite treatment also decreased the elevated nitrotyrosine and NOx-4 protein level in angiotensin II-infused hypertensive mice.

    CONCLUSIONS: The present study demonstrates that chronic treatment of hypertensive mice with sodium nitrite improves impaired endothelium function in conduit and resistance vessels in addition to its antihypertensive effect, partly through inhibition of ROS production.

    Matched MeSH terms: Arterial Pressure/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links