Displaying all 11 publications

Abstract:
Sort:
  1. Shi T, Gao J, Xu W, Liu X, Yan B, Azra MN, et al.
    PMID: 38908544 DOI: 10.1016/j.cbpb.2024.111001
    Mannose-binding lectin (MBL) is a vital member of the lectin family, crucial for mediating functions within the complement lectin pathway. In this study, following the cloning of the mannose-binding lectin (MBL) gene in the ridgetail white prawn, Exopalaemon carinicauda, we examined its expression patterns across various tissues and its role in combating challenges posed by Vibrio parahaemolyticus. The results revealed that the MBL gene spans 1342 bp, featuring an open reading frame of 972 bp. It encodes a protein comprising 323 amino acids, with a predicted relative molecular weight of 36 kDa and a theoretical isoelectric point of 6.18. The gene exhibited expression across various tissues including the eyestalk, heart, gill, hepatopancreas, stomach, intestine, ventral nerve cord, muscle, and hemolymph, with the highest expression detected in the hepatopancreas. Upon challenge with V. parahaemolyticus, RT-PCR analysis revealed a trend of MBL expression in hepatopancreatic tissues, characterized by an initial increase followed by a subsequent decrease, peaking at 24 h post-infection. Employing RNA interference to disrupt MBL gene expression resulted in a significant increase in mortality rates among individuals challenged with V. parahaemolyticus. Furthermore, we successfully generated the Pet32a-MBL recombinant protein through the construction of a prokaryotic expression vector for conducting in vitro bacterial inhibition assays, which demonstrated the inhibitory effect of the recombinant protein on V. parahaemolyticus, laying a foundation for further exploration into its immune mechanism in response to V. parahaemolyticus challenges.
    Matched MeSH terms: Arthropod Proteins/chemistry
  2. Misnan R, Murad S, Yadzir ZH, Abdullah N
    Asian Pac J Allergy Immunol, 2012 Dec;30(4):285-93.
    PMID: 23393908
    Tropomyosin and arginine kinase have been identified as the major allergens in multiple species of crab. Charybdis feriatus is an important commercial crab in this country.
    Matched MeSH terms: Arthropod Proteins/chemistry
  3. Pang SL, Ho KL, Waterman J, Teh AH, Chew FT, Ng CL
    Acta Crystallogr F Struct Biol Commun, 2015 Nov;71(Pt 11):1396-400.
    PMID: 26527267 DOI: 10.1107/S2053230X1501818X
    Dermatophagoides farinae is one of the major house dust mite (HDM) species that cause allergic diseases. N-terminally His-tagged recombinant Der f 21 (rDer f 21), a group 21 allergen, with the signal peptide truncated was successfully overexpressed in an Escherichia coli expression system. The purified rDer f 21 protein was initially crystallized using the sitting-drop vapour-diffusion method. Well diffracting protein crystals were obtained after optimization of the crystallization conditions using the hanging-drop vapour-diffusion method with a reservoir solution consisting of 0.19 M Tris-HCl pH 8.0, 32% PEG 400 at 293 K. X-ray diffraction data were collected to 1.49 Å resolution using an in-house X-ray source. The crystal belonged to the C-centered monoclinic space group C2, with unit-cell parameters a = 123.46, b = 27.71, c = 90.25 Å, β = 125.84°. The calculated Matthews coefficient (VM) of 2.06 Å(3) Da(-1) suggests that there are two molecules per asymmetric unit, with a solvent content of 40.3%. Despite sharing high sequence identity with Blo t 5 (45%) and Blo t 21 (41%), both of which were determined to be monomeric in solution, size-exclusion chromatography, static light scattering and self-rotation function analysis indicate that rDer f 21 is likely to be a dimeric protein.
    Matched MeSH terms: Arthropod Proteins/chemistry*
  4. Ravichandran G, Pasupuleti M, Arasu MV, Al-Dhabi NA, Arshad A, Arockiaraj J
    Fish Shellfish Immunol, 2020 Nov;106:332-340.
    PMID: 32758637 DOI: 10.1016/j.fsi.2020.07.068
    The occurrences of multiple drug-resistant strains have been relentlessly increasing in recent years. The aquaculture industry has encountered major disease outbreaks and crucially affected by this situation. The usage of non-specific chemicals and antibiotics expedites the stimulation of resistant strains. Triggering the natural defense mechanism would provide an effective and safest way of protecting the host system. Hence, we have investigated the innate immune function of serine/threonine-protein kinase (STPK) in Macrobrachium rosenbergii (Mr). The in-silico protein analysis resulted in the identification of cationic antimicrobial peptide, MrSL-19, with interesting properties from STPK of M. rosenbergii. Antimicrobial assay, FACS and SEM analysis demonstrated that the peptide potentially inhibits Staphylococcus aureus by interacting with its membrane. The toxic study on MrSL-19 demonstrated that the peptide is not toxic against HEK293 cells as well as human erythrocytes. This investigation showed the significant innate immune property of an efficient cationic antimicrobial peptide, MrSL-19 of STPK from M. rosenbergii.
    Matched MeSH terms: Arthropod Proteins/chemistry
  5. Reginald K, Tan CL, Chen S, Yuen L, Goh SY, Chew FT
    Sci Rep, 2018 08 06;8(1):11743.
    PMID: 30082894 DOI: 10.1038/s41598-018-30224-z
    We previously identified an expressed sequence tag clone, Der f 22, showing 41% amino acid identity to published Der f 2, and show that both genes are possible paralogues. The objective of this study was to characterize the genomic, proteomic and immunological functions Der f 22 and Der f 2. The full-length sequence of Der f 2 and Der f 22 coded for mature proteins of 129 and 135 amino acids respectively, both containing 6 cysteine residues. Phylogenetic analysis of known group 2 allergens and their homologues from our expressed sequence tag library showed that Der f 22 is a paralogue of Der f 2. Both Der f 2 and Der f 22 were single gene products with one intron. Both allergens showed specific IgE-binding to over 40% of the atopic patients, with limited of cross-reactivity. Both allergens were detected at the gut region of D. farinae by immunostaining. Der f 22 is an important allergen with significant IgE reactivity among the atopic population, and should be considered in the diagnostic panel and evaluated as future hypoallergen vaccine therapeutic target.
    Matched MeSH terms: Arthropod Proteins/chemistry
  6. Reginald K, Chew FT
    Sci Rep, 2019 02 07;9(1):1556.
    PMID: 30733527 DOI: 10.1038/s41598-018-38313-9
    Der p 2 is a major dust mite allergen and >80% of mite allergic individuals have specific IgE to this allergen. Although it is well characterized in terms of allergenicity, there is still some ambiguity in terms of its biological function. Three-dimensional structural analysis of Der p 2 and its close homologues indicate the presence of a hydrophobic cavity which can potentially bind to lipid molecules. In this study, we aimed to identify the potential ligand of Der p 2. Using a liposome pulldown assay, we show that recombinant Der p 2 binds to liposomes prepared with exogenous cholesterol in a dose dependent fashion. Next, an ELISA based assay using immobilized lipids was used to study binding specificities of other lipid molecules. Cholesterol was the preferred ligand of Der p 2 among 11 different lipids tested. Two homologues of Der p 2, Der f 2 and Der f 22 also bound to cholesterol. Further, using liquid chromatography-mass spectrometry (LC-MS), we confirmed that cholesterol is the natural ligand of Der p 2. Three amino acid residues of Der p 2, V104, V106 and V110 are possible cholesterol binding sites, as alanine mutations of these residues showed a significant decrease in binding (p 
    Matched MeSH terms: Arthropod Proteins/chemistry
  7. Soo TCC, Bhassu S
    PLoS One, 2021;16(10):e0258655.
    PMID: 34653229 DOI: 10.1371/journal.pone.0258655
    Diseases have remained the major issue for shrimp aquaculture industry for decades by which different shrimp species demonstrated alternative disease resistance or tolerance. However, there had been insufficient studies on the underlying host mechanisms of such phenomenon. Hence, in this study, the main objective involves gaining a deeper understanding into the functional importance of shrimp STAT gene from the aspects of expression, sequence, structure, and associated genes. STAT gene was selected primarily because of its vital signalling roles in stress, endocrine, and immune response. The differential gene expressions of Macrobrachium rosenbergii STAT (MrST) and Penaeus monodon STAT (PmST) under White Spot Syndrome Virus (WSSV) and Vibrio parahaemolyticus/VpAHPND infections were identified through qPCR analysis. Notably, during both pathogenic infections, MrST demonstrated significant gene expression down-regulations (during either early or later post-infection time points) whereas PmST showed only significant gene expression up-regulations. Important sequence conservation or divergence was highlighted through STAT sequence comparison especially amino acid alterations at 614 aa [K (Lysine) to E (Glutamic Acid)] and 629 aa [F (Phenylalanine) to V (Valine)] from PmST (AY327491.1) to PmST (disease tolerant strain). There were significant differences observed between in silico characterized structures of MrST and PmST proteins. Important functional differentially expressed genes (DEGs) in the aspects of stress, endocrine, immune, signalling, and structural were uncovered through comparative transcriptomic analysis. The DEGs associated with STAT functioning were identified including inositol 1,4,5-trisphosphate receptor, hsp90, caspase, ATP binding cassette transmembrane transporter, C-type Lectin, HMGB, ALF1, ALF3, superoxide dismutase, glutathione peroxidase, catalase, and TBK1. The main findings of this study are STAT differential gene expression patterns, sequence divergence, structural differences, and associated functional DEGs. These findings can be further utilized for shrimp health or host response diagnostic studies. STAT gene can also be proposed as a suitable candidate for future studies of shrimp innate immune enhancement.
    Matched MeSH terms: Arthropod Proteins/chemistry
  8. Arockiaraj J, Vanaraja P, Easwvaran S, Singh A, Othman RY, Bhassu S
    Mol Biol Rep, 2012 Jun;39(6):6671-82.
    PMID: 22290288 DOI: 10.1007/s11033-012-1473-7
    In this study, we have reported a full length of small heat shock protein 37 (designated MrHSP37) gene, identified from the transcriptome database of freshwater prawn Macrobrachium rosenbergii. The complete gene sequence of the MrHSP37 is 2,425 base pairs in length, and encodes 338 amino acids. MrHSP37 contains a long heat shock protein family profile in the amino acid sequence between 205 and 288. The mRNA expressions of MrHSP37 in healthy and the infectious hypodermal and hematopoietic necrosis virus (IHHNV) challenged M. rosenbergii were examined using quantitative real time polymerase chain reaction (qRT-PCR). MrHSP37 is highly expressed in hepatopancreas and all the other tissues (walking leg, gills, muscle, stomach, haemocyte, intestine, pleopods, brain and eye stalk) of M. rosenbergii taken for analysis. The expression is strongly up-regulated after IHHNV challenge. To understand its biological activity, the recombinant MrHSP37 gene was constructed and expressed in Escherichia coli BL21 (DE3). The results of ATPase assay showed that the recombinant MrHSP37 protein exhibited apparent ATPase activity which increased with the concentration of the protein. And also the purified recombinant MrHSP37 protein was used for thermal aggregation assay (chaperone activity). It showed that the recombinant MrHSP37 protein is an active chaperone in this assay. Taken together, these results suggest that MrHSP37 is potentially involved in the immune responses against IHHNV challenge in M. rosenbergii.
    Matched MeSH terms: Arthropod Proteins/chemistry
  9. Lam SD, Ashford P, Díaz-Sánchez S, Villar M, Gortázar C, de la Fuente J, et al.
    Viruses, 2021 04 19;13(4).
    PMID: 33921873 DOI: 10.3390/v13040708
    Coronavirus-like organisms have been previously identified in Arthropod ectoparasites (such as ticks and unfed cat flea). Yet, the question regarding the possible role of these arthropods as SARS-CoV-2 passive/biological transmission vectors is still poorly explored. In this study, we performed in silico structural and binding energy calculations to assess the risks associated with possible ectoparasite transmission. We found sufficient similarity between ectoparasite ACE and human ACE2 protein sequences to build good quality 3D-models of the SARS-CoV-2 Spike:ACE complex to assess the impacts of ectoparasite mutations on complex stability. For several species (e.g., water flea, deer tick, body louse), our analyses showed no significant destabilisation of the SARS-CoV-2 Spike:ACE complex, suggesting these species would bind the viral Spike protein. Our structural analyses also provide structural rationale for interactions between the viral Spike and the ectoparasite ACE proteins. Although we do not have experimental evidence of infection in these ectoparasites, the predicted stability of the complex suggests this is possible, raising concerns of a possible role in passive transmission of the virus to their human hosts.
    Matched MeSH terms: Arthropod Proteins/chemistry
  10. Arockiaraj J, Chaurasia MK, Kumaresan V, Palanisamy R, Harikrishnan R, Pasupuleti M, et al.
    Fish Shellfish Immunol, 2015 Apr;43(2):364-74.
    PMID: 25575476 DOI: 10.1016/j.fsi.2014.12.036
    Mannose-binding lectin (MBL), an antimicrobial protein, is an important component of innate immune system which recognizes repetitive sugar groups on the surface of bacteria and viruses leading to activation of the complement system. In this study, we reported a complete molecular characterization of cDNA encoded for MBL from freshwater prawn Macrobrachium rosenbergii (Mr). Two short peptides (MrMBL-N20: (20)AWNTYDYMKREHSLVKPYQG(39) and MrMBL-C16: (307)GGLFYVKHKEQQRKRF(322)) were synthesized from the MrMBL polypeptide. The purity of the MrMBL-N20 (89%) and MrMBL-C16 (93%) peptides were confirmed by MS analysis (MALDI-ToF). The purified peptides were used for further antimicrobial characterization including minimum inhibitory concentration (MIC) assay, kinetics of bactericidal efficiency and analysis of hemolytic capacity. The peptides exhibited antimicrobial activity towards all the Gram-negative bacteria taken for analysis, whereas they showed the activity towards only a few selected Gram-positive bacteria. MrMBL-C16 peptides produced the highest inhibition towards both the Gram-negative and Gram-positive bacteria compared to the MrMBL-N20. Both peptides do not produce any inhibition against Bacillus sps. The kinetics of bactericidal efficiency showed that the peptides drastically reduced the number of surviving bacterial colonies after 24 h incubation. The results of hemolytic activity showed that both peptides produced strong activity at higher concentration. However, MrMBL-C16 peptide produced the highest activity compared to the MrMBL-N20 peptide. Overall, the results indicated that the peptides can be used as bactericidal agents. The MrMBL protein sequence was characterized using various bioinformatics tools including phylogenetic analysis and structure prediction. We also reported the MrMBL gene expression pattern upon viral and bacterial infection in M. rosenbergii gills. It could be concluded that the prawn MBL may be one of the important molecule which is involved in antimicrobial mechanism. Moreover, MrMBL derived MrMBL-N20 and MrMBL-C16 peptides are important antimicrobial peptides for the recognition and eradication of viral and bacterial pathogens.
    Matched MeSH terms: Arthropod Proteins/chemistry
  11. Chaurasia MK, Ravichandran G, Nizam F, Arasu MV, Al-Dhabi NA, Arshad A, et al.
    Fish Shellfish Immunol, 2016 Jul;54:353-63.
    PMID: 27109581 DOI: 10.1016/j.fsi.2016.04.031
    This study reports the comprehensive comparative information of two different detoxification enzymes such as glutathione S-transferases (GSTs) delta and kappa from freshwater giant prawn Macrobrachium rosenbergii (designated as MrGSTD and MrGSTK) by investigating their in-silico characters and mRNA modulation against various biotic and abiotic oxidative stressors. The physico-chemical properties of these cDNA and their polypeptide structure were analyzed using various bioinformatics program. The analysis indicated the variation in size of the polypeptides, presence or absence of domains and motifs and structure. Homology and phylogenetic analysis revealed that MrGSTD shared maximum identity (83%) with crustaceans GST delta, whereas MrGSTK fell in arthropods GST kappa. It is interesting to note that MrGSTD and MrGSTK shared only 21% identity; it indicated their structural difference. Structural analysis indicated that MrGSTD to be canonical dimer like shape and MrGSTK appeared to be butterfly dimer like shape, in spite of four β-sheets being conserved in both GSTs. Tissue specific gene expression analysis showed that both MrGSTD and MrGSTK are highly expressed in immune organs such as haemocyte and hepatopancreas, respectively. To understand the role of mRNA modulation of MrGSTD and MrGSTK, the prawns were inducted with oxidative stressors such as bacteria (Vibrio harveyi), virus [white spot syndrome virus (WSSV)] and heavy metal, cadmium (Cd). The analysis revealed an interesting fact that both MrGSTD and MrGSTK showed higher (P 
    Matched MeSH terms: Arthropod Proteins/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links