This study aims to investigate the use of palm olein as the oil phase for betamethasone 17-valerate (BV) emulsions. The physicochemical properties of the formulations were characterized. In vitro drug release study was performed with the Hanson Vertical Diffusion Cell System; the samples were quantified with HPLC and the results were compared with commercial products. Optimized emulsion formulations were subjected to stability studies for 3 months at temperatures of 4, 25, and 40°C; the betamethasone 17-valerate content was analyzed using HPLC. The formulations produced mean particle size of 2-4 μm, viscosities of 50-250 mPa.s, and zeta potential between -45 and -68 mV. The rheological analyses showed that the emulsions exhibited pseudoplastic and viscoelastic behavior. The in vitro release of BV from palm olein emulsion through cellulose acetate was 4.5 times higher than that of commercial products and more BV molecules deposited in rat skin. Less than 4% of the drug was degraded in the formulations during the 3-month period when they were subjected to the three different temperatures. These findings indicate that palm olein-in-water emulsion can be an alternative vehicle for topical drug delivery system with superior permeability.
Betamethsone valerate (BMV), a medium potency topical corticosteroid, is one of the most commonly employed pharmacological agents for the management of atopic dermatitis in both adults and children. Despite having remarkable pharmacological efficacy, these agents have limited clinical implication due to poor penetration across the startum cornum (SC). To mitigate issues related to targeted delivery, stability, and solubility as well as to potentiate therapeutic and clinical implication, the nanodelivery systems have gained remarkable recognition. Therefore, this study was aimed to encapsulate BMV into the chitosan nanoparticles (CS-NPs) for optimum dermal targeting and improved penetration across the SC. The prepared NPs were characterized for particle size, zeta potential, polydispersity index, entrapment efficiency, loading capacity, crystallinity, thermal behavior, morphology, in vitro release kinetics, drug permeation across the SC, and percentage of drug retained into various skin layers. Results showed that optimized BMV-CS-NPs exhibited optimum physicochemical characteristics including small particle size (< 250 ± 28 nm), higher zeta potential (+58 ± 8 mV), and high entrapment efficiency (86 ± 5.6%) and loading capacity (34 ± 7.2%). The in vitro release study revealed that BMV-CS-NPs displayed Fickian-diffusion type mechanism of release in simulated skin surface (pH 5.5). Drug permeation efficiency and the amount of BMV retained into the epidermis and the dermis were comparatively higher in case of BMV-CS-NPs compared to BMV solution. Conclusively, we anticipated that BMV-CS-NPs could be a promising nanodelivery system for efficient dermal targeting of BMV and improved anti-AD efficacy.