METHODS: A systematic literature search of brain tumours in the context of fMRI methods applied to pre-operative mapping for language functional areas was conducted using PubMed/MEDLINE and Scopus electronic database following PRISMA guidelines. The article search was conducted between the earliest record and March 1, 2019. References and citations were checked in Google Scholar database.
RESULTS: Twenty-nine independent studies were identified, comprising 1031 adult participants with 976 patients characterised with different types and sizes of brain tumours, and the remaining 55 being healthy controls. These studies evaluated functional language areas in patients with brain tumours prior to surgical interventions using language-based fMRI. Results demonstrated that 86% of the studies used a Word Generation Task (WGT) to evoke functional language areas during pre-operative mapping. Fifty-seven percent of the studies that used language-based paradigms in conjunction with fMRI as a pre-operative mapping tool were in agreement with intra-operative results of language localization.
CONCLUSIONS: WGT was most commonly utilised and is proposed as a suitable and useful technique for a language-based paradigm fMRI for pre-operative mapping. However, based on available evidence, WGT alone is not sufficient. We propose a combination and convergence paradigms for a more sensitive and specific map of language function for pre-operative mapping. A standard guideline for clinical applications should be established.
METHODS: Such activity is recorded through various neuroimaging techniques like fMRI, EEG, MEG etc. EEG signals based localization is termed as EEG source localization. The source localization problem is defined by two complementary problems; the forward problem and the inverse problem. The forward problem involves the modeling how the electromagnetic sources cause measurement in sensor space, while the inverse problem refers to the estimation of the sources (causes) from observed data (consequences). Usually, this inverse problem is ill-posed. In other words, there are many solutions to the inverse problem that explains the same data. This ill-posed problem can be finessed by using prior information within a Bayesian framework. This research work discusses source reconstruction for EEG data using a Bayesian framework. In particular, MSP, LORETA and MNE are compared.
RESULTS: The results are compared in terms of variational free energy approximation to model evidence and in terms of variance accounted for in the sensor space. The results are taken for real time EEG data and synthetically generated EEG data at an SNR level of 10dB.
CONCLUSION: In brief, it was seen that MSP has the highest evidence and lowest localization error when compared to classical models. Furthermore, the plausibility and consistency of the source reconstruction speaks to the ability of MSP technique to localize active brain sources.
METHODS: 3-T brain MRI and DTI (diffusion tensor imaging) were performed on 26 PD and 13 MSA patients. Regions of interest (ROIs) were the putamen, substantia nigra, pons, middle cerebellar peduncles (MCP) and cerebellum. Linear, volumetry and DTI (fractional anisotropy and mean diffusivity) were measured. A three-node decision tree was formulated, with design goals being 100 % specificity at node 1, 100 % sensitivity at node 2 and highest combined sensitivity and specificity at node 3.
RESULTS: Nine parameters (mean width, fractional anisotropy (FA) and mean diffusivity (MD) of MCP; anteroposterior diameter of pons; cerebellar FA and volume; pons and mean putamen volume; mean FA substantia nigra compacta-rostral) showed statistically significant (P < 0.05) differences between MSA and PD with mean MCP width, anteroposterior diameter of pons and mean FA MCP chosen for the decision tree. Threshold values were 14.6 mm, 21.8 mm and 0.55, respectively. Overall performance of the decision tree was 92 % sensitivity, 96 % specificity, 92 % PPV and 96 % NPV. Twelve out of 13 MSA patients were accurately classified.
CONCLUSION: Formation of the decision tree using these parameters was both descriptive and predictive in differentiating between MSA and PD.
KEY POINTS: • Parkinson's disease and multiple system atrophy can be distinguished on MR imaging. • Combined conventional MRI and diffusion tensor imaging improves the accuracy of diagnosis. • A decision tree is descriptive and predictive in differentiating between clinical entities. • A decision tree can reliably differentiate Parkinson's disease from multiple system atrophy.
METHODS: Both ictal and interictal ESI were performed by the use of patient-specific realistic forward models and 3 different linear distributed inverse models. Lateralization as well as concordance between ESI-estimated focuses and single-photon emission computed tomography (SPECT) focuses were assessed.
RESULTS: All the ESI focuses (both ictal and interictal) were found lateralized to the same hemisphere as ictal SPECT focuses. Lateralization results also were in agreement with the lesion sides as visualized on magnetic resonance imaging. Ictal ESI results, obtained from the best-performing inverse model, were fully concordant with the same cortical lobe as SPECT focuses, whereas the corresponding concordance rate is 87.50% in case of interictal ESI.
CONCLUSIONS: Our findings show that ictal ESI gives fully lateralized and highly concordant results with ictal SPECT and may provide a cost-effective substitute for ictal SPECT.
OBJECTIVE: To assess, by diffusion tensor imaging, microstructural integrity of white matter in paediatric patients with acute lymphoblastic leukaemia (ALL) following intrathecal and intravenous chemotherapy.
MATERIALS AND METHODS: Eleven children diagnosed with de novo ALL underwent MRI scans of the brain with diffusion tensor imaging (DTI) prior to commencement of chemotherapy and at 12 months after diagnosis, using a 3-tesla (T) MRI scanner. We investigated the changes in DTI parameters in white matter tracts before and after chemotherapy using tract-based spatial statistics overlaid on the International Consortium of Brain Mapping DTI-81 atlas. All of the children underwent formal neurodevelopmental assessment at the two study time points.
RESULTS: Whole-brain DTI analysis showed significant changes between the two time points, affecting several white matter tracts. The tracts demonstrated longitudinal changes of decreasing mean and radial diffusivity. The neurodevelopment of the children was near compatible for age at the end of ALL treatment.
CONCLUSION: The quantification of white matter tracts changes in children undergoing chemotherapy showed improving longitudinal values in DTI metrics (stable fractional anisotropy, decreasing mean and radial diffusivity), which are incompatible with deterioration of microstructural integrity in these children.