Displaying all 10 publications

Abstract:
Sort:
  1. Lazahari MI, Sattar MA, Abdullah NA, Khan MA, Johns EJ
    Methods Find Exp Clin Pharmacol, 2008 Apr;30(3):193-9.
    PMID: 18597003 DOI: 10.1358/mf.2008.30.3.1166221
    This study examined the sympathoinhibitory effects of clonidine and a novel clonidine analog, AL-12, in rat models of genetic hypertension and a combined state of genetic hypertension and diabetes. Rats in the treatment groups were given either clonidine or AL-12 while the respective control groups received either saline or Tween 80 for 6 days. Physiological data were collected during this period, which was followed by acute studies on day 7 when bolus administrations (i.v.) of graded doses of noradrenaline, phenylephrine and methoxamine were carried out. It was observed that in AL-12-treated nondiabetic spontaneously hypertensive rats (SHR), the pressure responses to all adrenergic agonists were greater (p < 0.05) in the treated group, while in the diabetic SHR rats a larger pressure response was observed only to noradrenaline (p < 0.05). In nondiabetic SHR rats treated with clonidine, a greater (p < 0.05) pressure response was observed only in the case of phenylephrine. In the diabetic SHR rats treated with clonidine, the pressure responses to the adrenergic agonists were similar (p > 0.05) in the treated and its control animals except that methoxamine caused a greater (p < 0.05) pressure response in the control group. The data obtained suggest that clonidine and AL-12 act possibly via vascular alpha1 and alpha2 adrenoceptors present at both pre- and postsynaptic locations.
    Matched MeSH terms: Clonidine/analogs & derivatives*
  2. Ahmad A, Sattar MA, Azam M, Abdulla MH, Khan SA, Hashmi F, et al.
    PLoS One, 2016;11(5):e0154995.
    PMID: 27191852 DOI: 10.1371/journal.pone.0154995
    The purpose of the present study was to investigate the interaction between H2S and NO (nitric oxide) in the kidney and to evaluate its impact on the functional contribution of α1A and α1B-adrenoreceptors subtypes mediating the renal vasoconstriction in the kidney of rats with left ventricular hypertrophy (LVH). In rats the LVH induction was by isoprenaline administration and caffeine in the drinking water together with intraperitoneal administration of H2S. The responsiveness of α1A and α1B to exogenous noradrenaline, phenylephrine and methoxaminein the absence and presence of 5-methylurapidil (5-MeU) and chloroethylclonidine (CEC) was studied. Cystathione gamma lyase (CSE), cystathione β synthase (CBS), 3-mercaptopyruvate sulphar transferase (3-MST) and endothelial nitric oxide synthase (eNOS) were quantified. There was significant up regulation of CSE and eNOS in the LVH-H2S compared to the LVH group (P<0.05). Baseline renal cortical blood perfusion (RCBP) was increased (P<0.05) in the LVH-H2S compared to the LVH group. The responsiveness of α1A-adrenergic receptors to adrenergic agonists was increased (P<0.05) after administration of low dose 5-Methylurapidil in the LVH-H2S group while α1B-adrenergic receptors responsiveness to adrenergic agonists were increased (P<0.05) by both low and high dose chloroethylclonidine in the LVH-H2S group. Treatment of LVH with H2S resulted in up-regulation of CSE/H2S, CBS, and 3-MST and eNOS/NO/cGMP pathways in the kidney. These up regulation of CSE/H2S, CBS, and 3-MST and eNOS/NO/cGMP pathways enhanced the responsiveness of α1A and α1B-adrenoreceptors subtypes to adrenergic agonists in LVH-H2S. These findings indicate an important role for H2S in modulating deranged signalling in the renal vasculature resulting from LVH development.
    Matched MeSH terms: Clonidine/analogs & derivatives
  3. Khan MA, Sattar MA, Abdullah NA, Johns EJ
    Acta Pharmacol Sin, 2008 Feb;29(2):193-203.
    PMID: 18215348 DOI: 10.1111/j.1745-7254.2008.00727.x
    This study examined whether alpha1B-adrenoceptors are involved in mediating adrenergically-induced renal vasoconstrictor responses in rats with pathophysiological and normal physiological states.
    Matched MeSH terms: Clonidine/analogs & derivatives
  4. Shahid N, Siddique MI, Razzaq Z, Katas H, Waqas MK, Rahman KU
    Drug Dev Ind Pharm, 2018 Dec;44(12):2061-2070.
    PMID: 30081679 DOI: 10.1080/03639045.2018.1509081
    OBJECTIVE: This study was designed to optimize and develop matrix type transdermal drug delivery system (TDDS) containing tizanidine hydrochloride (TZH) using different polymers by solvent evaporation method.

    SIGNIFICANCE: A strong need exists for the development of transdermal patch having improved bioavailability at the site of action with fewer side effects at off-target organs.

    METHODS: The patches were physically characterized by texture analysis (color, flexibility, smoothness, transparency, and homogeneity), in vitro dissolution test and FTIR analysis. Furthermore, functional properties essential for TDDS, in vitro percentage of moisture content, percentage of water uptake, in vitro permeation by following different kinetic models, in vivo drug content estimation and skin irritation were determined using rabbit skin.

    RESULTS: The optimized patches were soft, of uniform texture and thickness as well as pliable in nature. Novel transdermal patch showed ideal characteristics in terms of moisture content and water uptake. FTIR analysis confirmed no interaction between TZH and cellulose acetate phthalate (CAP). The patch showed sustained release of the drug which increased the availability of short acting TZH at the site of action. The patch also showed its biocompatibility to the in vivo model of rabbit skin.

    CONCLUSIONS: The results demonstrated that topically applied transdermal patch will be a potential medicated sustain release patch for muscle pain which will improve patient compliance.

    Matched MeSH terms: Clonidine/analogs & derivatives*
  5. Kazi RN, Munavvar AS, Abdullah NA, Khan AH, Johns EJ
    Auton Autacoid Pharmacol, 2009 Jan;29(1-2):25-31.
    PMID: 19302553 DOI: 10.1111/j.1474-8673.2009.00428.x
    1 Increased renal vascular resistance is one renal functional abnormality that contributes to hypertension, and alpha(1)-adrenoceptors play a pivotal role in modulating this renal vascular resistance. This study investigates the functional contribution of alpha(1)-adrenoceptor subtypes in the renal cortical vasculature of Wistar-Kyoto rats on a normal sodium diet (WKYNNa) compared with those given saline to drink for 6 weeks (WKYHNa). 2 The renal cortical vascular responses to the adrenergic agonists noradrenaline (NA), methoxamine (ME) and phenylephrine (PE) were measured in WKYHNa and WKYNNa rats either in the absence (the control phase) or presence of chloroethylclonidine (CEC), an alpha(1B)-adrenoceptor antagonist, 5-methylurapidil (5-MeU), an alpha(1A) antagonist, or BMY7378, an alpha(1D) antagonist. 3 Results showed a greater renal cortical vascular sensitivity to NA, PE and ME in the WKYHNa compared with WKYNNa rats (P < 0.05). Moreover, 5-MeU and BMY7378 attenuated adrenergically induced renal cortical vasoconstriction in WKYHNa and WKYNNa rats; this response was largely blunted in CEC-treated WKYHNa rats (all P < 0.05) but not in CEC-treated WKYNNa rats. 4 The data suggest that irrespective of dietary sodium content, in Wistar-Kyoto rats alpha(1A)- and alpha(1D)-subtypes are the major alpha(1)-adrenoceptors in renal cortical vasculature; however, there appears to be a functional involvement of alpha(1B)-adrenoceptors in the WKYHNa rats.
    Matched MeSH terms: Clonidine/analogs & derivatives
  6. Armenia, Sattar MA, Abdullah NA, Khan MA, Johns EJ
    Auton Autacoid Pharmacol, 2008 Jan;28(1):1-10.
    PMID: 18257746 DOI: 10.1111/j.1474-8673.2007.00412.x
    1 The present study investigated the effect of streptozotocin-induced diabetes on alpha(1)-adrenoceptor subtypes in rat renal resistance vessels. 2 Studies on renal haemodynamics were carried out 7 days after the last streptozotocin. Changes in renal blood flow were recorded in response to electrical stimulation of the renal nerve (RNS) and a range of adrenergic agonists; noradrenaline (NA), phenylephrine (PE) and methoxamine (MTX), either in the absence or the presence of nitrendipine (Nit), 5-methylurapidil (MEU), chlorethylclonidine (CEC) or BMY 7378. 3 In non-diabetic animals, Nit, MEU and BMY 7378 significantly attenuated renal vasoconstriction induced by adrenergic agonists, while CEC showed a significant accentuation in RNS-induced responses without having a significant effect on responses to adrenergic agonists. In diabetic rats, renal vasoconstriction was also significantly reduced in Nit-, MEU- and BMY 7378-treated groups and CEC potentiated RNS-induced contractions caused a change similar to that observed in non-diabetic rats. BMY 7378 significantly (P < 0.05) attenuated the PE- and MTX-induced vasoconstrictions but did not cause any significant (P > 0.05) alteration in the RNS- and NA-induced responses. 4 The results showed functional co-existence of alpha(1A)- and alpha(1D)-adrenoceptors in the renal vasculature of SD rats irrespective of the presence of diabetes. A possible minor contribution of prejunctional alpha-adrenoceptor subtype has also been suggested in either experimental group, particularly possible functional involvement of alpha(1B)-adrenoceptor subtypes in non-diabetic SD rats.
    Matched MeSH terms: Clonidine/analogs & derivatives
  7. Khan AH, Sattar MA, Abdullah NA, Johns EJ
    Eur J Pharmacol, 2007 Aug 13;569(1-2):110-8.
    PMID: 17559832
    This study investigated whether the alpha(1)-adrenoceptor subtype(s) mediating the vasoconstrictor actions of the renal sympathetic nerves were altered in rats with cisplatin-induced renal failure. Male Wistar Kyoto rats were used and half received cisplatin (5 mg/kg i.p.) to induce renal failure and were taken for study 7 days later. The renal blood flow reductions caused by electrical renal nerve stimulation and close intra-renal administration of noradrenaline, phenylephrine and methoxamine were determined before and after amlodopine (AMP), 5-methylurapidil (MeU), chloroethylclonidine (CEC) or BMY 7378. Water intake and creatinine clearance were decreased (P<0.05) by 40-50% while fractional excretion of sodium was increased two-fold in the cisplatin treated rats. Mean arterial pressure was higher, 110+/-2 versus 102+/-3 mmHg and renal blood flow was lower, 10.7+/-0.9 versus 18.9+/-0.1 ml/min/kg in the renal failure rats (both P<0.05). AMP, MeU and BMY 7378 decreased (all P<0.05) the adrenergically induced renal vasoconstrictor responses in the renal failure groups by 30 to 50% and in normal rats by 20 to 40%. In the presence of CEC, renal nerve stimulation and noradrenaline and methoxamine induced renal vasoconstrictor responses were enhanced (all P<0.05) in the renal failure but not in the normal rats. These data showed that alpha(1A)- and alpha(1D)-adrenoceptors were the major subtypes in mediating adrenergically induced renal vasoconstriction but there was no substantial shift in subtype in renal failure. The contribution of alpha(1B)-adrenoceptor subtypes either pre- or post-synaptic appeared to be raised in the renal failure rats.
    Matched MeSH terms: Clonidine/analogs & derivatives
  8. Sattar MA, Yusof AP, Gan EK, Sam TW, Johns EJ
    J Auton Pharmacol, 2001 5 15;20(5-6):297-304.
    PMID: 11350495
    1. This study compared the effect of a non-peptide angiotensin II receptor antagonist and a series of clonidine analogues on blood pressure and renal function in a two-kidney two-clip Goldblatt rat model of hypertension subjected to 2 weeks of dietary sodium deprivation. 2. Animals received either vehicle, the angiotensin II antagonist, ZD7155 or structural analogues derived from clonidine (AL-11, AL-12 and CN-10) at 10 mg kg-1 day-1 for 4 days. 3. All groups of rats had systolic blood pressure in the hypertensive range (160-180 mmHg). ZD7155 caused a 33-mmHg fall in blood pressure (P < 0.05) and raised plasma urea and creatinine four- to six-fold. 4. AL-12 decreased blood pressure by 30 mmHg (P < 0.05), but had no effect on water intake, urine flow or plasma urea and creatinine. AL-11 and CN-10 had minimal effects on blood pressure and water intake and while CN-10 decreased urine flow on the third treatment day, AL-11 markedly reduced urine flow by some 70%. 5. These data show that in this sodium deficient renovascular model of hypertension, blockade of angiotensin II receptors normalizes blood pressure but causes renal failure, whereas the vasodepressor action of the clonidine analogue AL-12 occurs without detriment to renal function. These findings imply that angiotensin II receptor antagonists could lead to renal failure if used as antihypertensive agents in renovascular hypertension whereas this would be avoided with the use of clonidine-like analogues.
    Matched MeSH terms: Clonidine/analogs & derivatives*
  9. Armenia A, Sattar MA, Abdullah NA, Khan MA, Johns EJ
    Acta Pharmacol Sin, 2008 May;29(5):564-72.
    PMID: 18430364 DOI: 10.1111/j.1745-7254.2008.00788.x
    This study investigates the subtypes of the alpha1-adrenoceptor mediating the adrenergically-induced renal vasoconstrictor responses in streptozotocin-induced diabetic and non-diabetic 2-kidney one clip (2K1C) Goldblatt hypertensive rats.
    Matched MeSH terms: Clonidine/analogs & derivatives
  10. Armenia A, Munavvar AS, Abdullah NA, Helmi A, Johns EJ
    Br J Pharmacol, 2004 Jun;142(4):719-26.
    PMID: 15172958
    1. Diabetes and hypertension are both associated with an increased risk of renal disease and are associated with neuropathies, which can cause defective autonomic control of major organs including the kidney. This study aimed to examine the alpha(1)-adrenoceptor subtype(s) involved in mediating adrenergically induced renal vasoconstriction in a rat model of diabetes and hypertension. 2. Male spontaneously hypertensive rats (SHR), 220-280 g, were anaesthetized with sodium pentobarbitone 7-day poststreptozotocin (55 mg x kg(-1) i.p.) treatment. The reductions in renal blood flow (RBF) induced by increasing frequencies of electrical renal nerve stimulation (RNS), close intrarenal bolus doses of noradrenaline (NA), phenylephrine (PE) or methoxamine were determined before and after administration of nitrendipine (Nit), 5-methylurapidil (5-MeU), chloroethylclonidine (CEC) and BMY 7378. 3. In the nondiabetic SHR group, mean arterial pressure (MAP) was 146+/-6 mmHg, RBF was 28.0+/-1.4 ml x min(-1) x kg(-1) and blood glucose was 112.3+/-4.7 mg x dl(-1), and in the diabetic SHR Group, MAP was 144+/-3 mmHg, RBF 26.9+/-1.3 ml(-1) min x kg(-1) and blood glucose 316.2+/-10.5 mg x dl(-1). Nit, 5-MeU and BMY 7378 blunted all the adrenergically induced renal vasoconstrictor responses in SHR and diabetic SHR by 25-35% (all P<0.05), but in diabetic rats the responses induced by RNS and NA treated with 5-MeU were not changed. By contrast, during the administration of CEC, vasoconstrictor responses to all agonists were enhanced by 20-25% (all P<0.05) in both the SHR and diabetic SHR. 4. These findings suggest that alpha(1A) and alpha(1D)-adrenoceptor subtypes contribute in mediating the adrenergically induced constriction of the renal vasculature in both the SHR and diabetic SHR. There was also an indication of a greater contribution of presynaptic adrenoceptors, that is, alpha(1B)-, and/or alpha(2)-subtypes.
    Matched MeSH terms: Clonidine/analogs & derivatives*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links