Displaying all 8 publications

Abstract:
Sort:
  1. Tan WS, Arulselvan P, Ng SF, Mat Taib CN, Sarian MN, Fakurazi S
    BMC Complement Altern Med, 2019 Jan 17;19(1):20.
    PMID: 30654793 DOI: 10.1186/s12906-018-2427-y
    BACKGROUND: Impaired wound healing is a debilitating complication of diabetes that leads to significant morbidity, particularly foot ulcers. The risk of developing diabetic foot ulcers for diabetic patients is 15% over their lifetime and approximately 85% of limb amputations is caused by non-healing ulcers. Unhealed, gangrenous wounds destroy the structural integrity of the skin, which acts as a protective barrier that prevents the invasion of external noxious agents into the body. Vicenin-2 (VCN-2) has been reported to contain prospective anti-oxidant and anti-inflammatory properties that enhance cell proliferation and migration. Sodium Alginate (SA) is a natural polysaccharide that possesses gel forming properties and has biodegradable and biocompatible characteristics. Therefore, the objective of this study is to evaluate the effect of SA wound dressings containing VCN-2 on diabetic wounds.

    METHODS: Wounds were inflicted in type-1 diabetic-streptozotocin (STZ) induced male Sprague Dawley rats. Subsequently, relevant groups were topically treated with the indicated concentrations (12.5, 25 and 50 μM) of VCN-2 hydrocolloid film over the study duration (14 days). The control group was treated with vehicle dressing (blank or allantoin). Wounded tissues and blood serum were collected on 0, 7 and 14 days prior to sacrifice. Appropriate wound assessments such as histological tests, nitric oxide assays, enzyme-linked immunosorbent assays (ELISA) and immunoblotting assays were conducted to confirm wound healing efficacy in the in vivo model. One-way Analysis of Variance (ANOVA) was used for statistical analysis.

    RESULTS: Results showed that hydrocolloid film was recapitulated with VCN-2 enhanced diabetic wound healing in a dose-dependent manner. VCN-2 reduced pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α), mediators (iNOS and COX-2), and nitric oxide (NO) via the NF-κB pathway. Data suggests that the VCN-2 film facilitated healing in hyperglycemic conditions by releasing growth factors such as (VEGF and TGF-β) to enhance cell proliferation, migration, and wound contraction via the VEGF and TGF-β mechanism pathways.

    CONCLUSIONS: This study's findings suggest that VCN-2 may possess wound healing potential since topical treatment with VCN-2 hydrocolloid films effectively enhanced wound healing in hyperglycemic conditions.

    Matched MeSH terms: Diabetic Foot/drug therapy*
  2. Mustafah NM, Chung TY
    J Wound Care, 2014 Feb;23(2 Suppl):S10-2.
    PMID: 24526167
    Overgranulation (also commonly known as hypergranulation) is a common problem in chronic wound management. We describe a case involving a 57-year-old lady with a chronic diabetic foot ulcer, complicated with overgranulation for the past year. She was administered with various treatments, including hydrocortisone 1% cream and hydrofiber, which proved ineffective and further delayed the healing process of her ulcer. We then decided to use crushed Papase tablets applied to her ulcer after a normal saline dressing and prior to an application of secondary dressing. The patient was instructed clearly on the dressing technique to be performed daily at home and was monitored weekly in a foot care clinic. The overgranulation resolved within 5 weeks and the patient continues recieving care to promote epithelialisation.
    Matched MeSH terms: Diabetic Foot/drug therapy
  3. Shaharudin A, Aziz Z
    J Wound Care, 2016 Oct 02;25(10):585-592.
    PMID: 27681589 DOI: 10.12968/jowc.2016.25.10.585
    OBJECTIVE: Hyaluronic acid (HA) and its derivatives are used for chronic wounds, but evidence of their effectiveness remains unclear. The aim of this study was to provide more updated evidence for the effectiveness of HA (or its derivatives) compared with placebo or other agents for promoting healing in chronic wounds.
    METHOD: The Cochrane Central Register of Controlled Trials, MEDLINE via Ovid Online, CINAHL and the EMBASE via EBSCO host databases were searched. Drug companies and experts in wounds were also contacted. Randomised controlled trials of HA (or its derivatives) compared with control were eligible for inclusion.
    RESULTS: We identified nine randomised controlled trials involving 865 participants with chronic wounds were included in the review. The reporting for mixed arterial and venous ulcers seems to be better quality than that for venous leg ulcers (VLUs) and diabetic foot ulcers (DFUs). Studies provided little evidence regarding the claimed effects of HA or its derivaties on healing of chronic wounds. However, there is some evidence on their effectiveness for reducing pain intensity for mixed arterial and venous ulcers, which involved 255 patients (MD=-6.78 [95% CI: -11.10 to -2.46]).
    CONCLUSION: Evidence to guide decisions regarding the use of HA or its derivatives to promote wound healing is still limited. More good-quality randomised controlled trials are warranted.
    KEYWORDS: assessment bias; chronic ulcers; hyaluronan; meta-analysis
    Matched MeSH terms: Diabetic Foot/drug therapy*
  4. Hussan F, Teoh SL, Muhamad N, Mazlan M, Latiff AA
    J Wound Care, 2014 Aug;23(8):400, 402, 404-7.
    PMID: 25139598 DOI: 10.12968/jowc.2014.23.8.400
    Transforming growth factor-β (TGF-β) plays an important role in wound healing. Delayed wound healing is a consequence of diabetes, leading to high morbidity and poor quality of life. Momordica charantia (MC) fruit possesses anti-diabetic and wound healing properties. This study aimed to explore the changes in TGF-β expression in diabetic wounds treated with topical MC fruit extract.
    Matched MeSH terms: Diabetic Foot/drug therapy*
  5. Choudhury H, Pandey M, Lim YQ, Low CY, Lee CT, Marilyn TCL, et al.
    Mater Sci Eng C Mater Biol Appl, 2020 Jul;112:110925.
    PMID: 32409075 DOI: 10.1016/j.msec.2020.110925
    Wounds associated with diabetes mellitus are the most severe co-morbidities, which could be progressed to cause cell necrosis leading to amputation. Statistics on the recent status of the diabetic wounds revealed that the disease affects 15% of diabetic patients, where 20% of them undergo amputation of their limb. Conventional therapies are found to be ineffective due to changes in the molecular architecture of the injured area, urging novel deliveries for effective treatment. Therefore, recent researches are on the development of new and effective wound care materials. Literature is evident in providing potential tools in topical drug delivery for wound healing under the umbrella of nanotechnology, where nano-scaffolds and nanofibers have shown promising results. The nano-sized particles are also known to promote healing of wounds by facilitating proper movement through the healing phases. To date, focuses have been made on the efficacy of silver nanoparticles (AgNPs) in treating the diabetic wound, where these nanoparticles are known to exploit potential biological properties in producing anti-inflammatory and antibacterial activities. AgNPs are also known to activate cellular mechanisms towards the healing of chronic wounds; however, associated toxicities of AgNPs are of great concern. This review is an attempt to illustrate the use of AgNPs in wound healing to facilitate this delivery system in bringing into clinical applications for a superior dressing and treatment over wounds and ulcers in diabetes patients.
    Matched MeSH terms: Diabetic Foot/drug therapy*
  6. Hussain Z, Thu HE, Shuid AN, Katas H, Hussain F
    Curr Drug Targets, 2018;19(5):527-550.
    PMID: 28676002 DOI: 10.2174/1389450118666170704132523
    BACKGROUND: Diabetic foot ulcers (DFUs) are the chronic, non-healing complications of diabetic mellitus which compels a significant burden to the patients and the healthcare system. Peripheral vascular disease, diabetic neuropathy, and abnormal cellular and cytokine/chemokine activity are among the prime players which exacerbate the severity and prevent wound repair. Unlike acute wounds, DFUs impose a substantial challenge to the conventional wound dressings and demand the development of novel and advanced wound healing modalities. In general, an ideal wound dressing should provide a moist wound environment, offer protection from secondary infections, eliminate wound exudate and stimulate tissue regeneration.

    OBJECTIVE: To date, numerous conventional wound dressings are employed for the management of DFUs but there is a lack of absolute and versatile choice. The current review was therefore aimed to summarize and critically discuss the available evidences related to pharmaceutical and therapeutic viability of polymer-based dressings for the treatment of DFUs.

    RESULTS: A versatile range of naturally-originated polymers including chitosan (CS), hyaluronic acid (HA), cellulose, alginate, dextran, collagen, gelatin, elastin, fibrin and silk fibroin have been utilized for the treatment of DFUs. These polymers have been used in the form of hydrogels, films, hydrocolloids, foams, membranes, scaffolds, microparticles, and nanoparticles. Moreover, the wound healing viability and clinical applicability of various mutually modified, semi-synthetic or synthetic polymers have also been critically discussed.

    CONCLUSION: In summary, this review enlightens the most recent developments in polymer-based wound dressings with special emphasis on advanced polymeric biomaterials, innovative therapeutic strategies and delivery approaches for the treatment of DFUs.

    Matched MeSH terms: Diabetic Foot/drug therapy*
  7. Shao M, Hussain Z, Thu HE, Khan S, de Matas M, Silkstone V, et al.
    Crit Rev Ther Drug Carrier Syst, 2017;34(5):387-452.
    PMID: 29256838 DOI: 10.1615/CritRevTherDrugCarrierSyst.2017016957
    Chronic wounds which include diabetic foot ulcer (DFU), pressure ulcer, and arterial or venous ulcers compel a significant burden to the patients, healthcare providers, and the healthcare system. Chronic wounds are characterized by an excessive persistent inflammatory phase, prolonged infection, and the failure of defense cells to respond to environmental stimuli. Unlike acute wounds, chronic nonhealing wounds pose a substantial challenge to conventional wound dressings, and the development of novel and advanced wound healing modalities is needed. Toward this end, numerous conventional wound-healing modalities have been evaluated in the management of nonhealing wounds, but a multifaceted approach is lacking. Therefore, this review aims to compile and explore the wide therapeutic algorithm of current and advanced wound healing approaches to the treatment of chronic wounds. The algorithm of chronic wound healing techniques includes conventional wound dressings; approaches based on autografts, allografts, and cultured epithelial autografts; and recent modalities based on natural, modified or synthetic polymers and biomaterials, processed mutually in the form of hydrogels, films, hydrocolloids, and foams. Moreover, this review also explores the promising potential of advanced drug delivery systems for the sustained delivery of growth factors, curcumin, aloe vera, hyaluronic acid, and other bioactive substances as well as stem cell therapy. The current review summarizes the convincing evidence for the clinical dominance of polymer-based chronic wound healing modalities as well as the latest and innovative therapeutic strategies for the treatment of chronic wounds.
    Matched MeSH terms: Diabetic Foot/drug therapy
  8. Goh TC, Bajuri MY, C Nadarajah S, Abdul Rashid AH, Baharuddin S, Zamri KS
    J Foot Ankle Res, 2020 Jun 16;13(1):36.
    PMID: 32546270 DOI: 10.1186/s13047-020-00406-y
    BACKGROUND: Diabetic foot infection is a worldwide health problem is commonly encountered in daily practice. This study was conducted to identify the microbiological profile and antibiotic sensitivity patterns of causative agents identified from diabetic foot infections (DFIs). In addition, the assessment included probable risk factors contributing to infection of ulcers that harbour multidrug-resistant organisms (MDROs) and their outcomes.

    METHODS: We carried out a prospective analysis based on the DFI samples collected from 2016 till 2018. Specimens were cultured with optimal techniques in addition to antibiotic susceptibility based on recommendations from The Clinical and Laboratory Standards Institute (CLSI). A total of 1040 pathogens were isolated with an average of 1.9 pathogens per lesion in 550 patients who were identified with having DFIs during this interval.

    RESULTS: A higher percentage of Gram-negative pathogens (54%) were identified as compared with Gram-positive pathogens (33%) or anaerobes (12%). A total of 85% of the patients were found to have polymicrobial infections. Pseudomonas aeruginosa (19%), Staphylococcus aureus (11%) and Bacteroides species (8%) appeared to be the predominant organisms isolated. In the management of Gram-positive bacteria, the most efficacious treatment was seen with the use of Vancomycin, while Imipenem and Amikacin proved to be effective in the treatment of Gram-negative bacteria.

    CONCLUSION: DFI's are common among Malaysians with diabetes, with a majority of cases displaying polymicrobial aetiology with multi-drug resistant isolates. The data obtained from this study will be valuable in aiding future empirical treatment guidelines in the treatment of DFIs. This study investigated the microbiology of DFIs and their resistance to antibiotics in patients with DFIs that were managed at a Tertiary Care Centre in Malaysia.

    Matched MeSH terms: Diabetic Foot/drug therapy
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links