Displaying publications 1 - 20 of 35 in total

Abstract:
Sort:
  1. Yap G, Mailepessov D, Lim XF, Chan S, How CB, Humaidi M, et al.
    Am J Trop Med Hyg, 2020 09;103(3):1234-1240.
    PMID: 32700679 DOI: 10.4269/ajtmh.19-0377
    Mosquito-borne flaviviruses are emerging pathogens of an increasing global public health concern because of their rapid increase in geographical range and the impact of climate change. Japanese encephalitis virus (JEV) and West Nile virus (WNV) are of concern because of the risk of reemergence and introduction by migratory birds. In Singapore, human WNV infection has never been reported and human JEV infection is rare. Four sentinel vector surveillance sites were established in Singapore to understand the potential risk posed by these viruses. Surveillance was carried out from August 2011 to December 2012 at Pulau Ubin, from March 2011 to March 2013 at an Avian Sanctuary (AS), from December 2010 from October 2012 at Murai Farmway, and from December 2010 to December 2013 at a nature reserve. The present study revealed active JEV transmission in Singapore through the detection of JEV genotype II in Culex tritaeniorhynchus collected from an Avian Sanctuary. Culex flavivirus (CxFV), similar to the Quang Binh virus isolated from Cx. tritaeniorhynchus in Vietnam and CxFV-LSFlaviV-A20-09 virus isolated in China, was also detected in Culex spp. (vishnui subgroup). No WNV was detected. This study demonstrates the important role that surveillance plays in public health and strongly suggests the circulation of JEV among wildlife in Singapore, despite the absence of reported human cases. A One Health approach involving surveillance, the collaboration between public health and wildlife managers, and control of mosquito populations remains the key measures in risk mitigation of JEV transmission in the enzootic cycle between birds and mosquitoes.
    Matched MeSH terms: Encephalitis, Japanese/epidemiology*
  2. Wong SC, Ooi MH, Abdullah AR, Wong SY, Krishnan S, Tio PH, et al.
    Trop Med Int Health, 2008 Jan;13(1):52-5.
    PMID: 18291002 DOI: 10.1111/j.1365-3156.2007.01967.x
    Japanese encephalitis virus (JEV) is an important encephalitis virus in Asia, but there are few data on Malaysia. A hospital-based surveillance system for Japanese encephalitis (JE) has been in operation in Sarawak, Malaysia, for the last 10 years. JEV is endemic in Sarawak, with cases occurring throughout the year and a seasonal peak in the last quarter (one-way anova, P < 0.0001). Ninety-two per cent of 133 cases were children aged 12 years or younger; the introduction of JE vaccination in July 2001 reduced the number of JE cases (84 in the four seasons prior to vs. 49 in the six seasons after, McNemar's test, P = 0.0001). After implementation of the programme, the mean age of infected children increased from 6.3 to 8.0 years (Student's t-test, P = 0.0037), suggesting the need for a catch-up programme.
    Matched MeSH terms: Encephalitis, Japanese/epidemiology*
  3. Takhampunya R, Kim HC, Tippayachai B, Kengluecha A, Klein TA, Lee WJ, et al.
    Virol J, 2011;8:449.
    PMID: 21943222 DOI: 10.1186/1743-422X-8-449
    Japanese encephalitis virus (JEV) genotype V reemerged in Asia (China) in 2009 after a 57-year hiatus from the continent, thereby emphasizing a need to increase regional surveillance efforts. Genotypic characterization was performed on 19 JEV-positive mosquito pools (18 pools of Culex tritaeniorhynchus and 1 pool of Cx. bitaeniorhynchus) from a total of 64 positive pools collected from geographically different locations throughout the Republic of Korea (ROK) during 2008 and 2010.
    Matched MeSH terms: Encephalitis, Japanese/epidemiology
  4. Solomon T, Winter PM
    PMID: 15119771
    Japanese encephalitis virus (JEV) and West Nile virus (WNV) provide some of the most important examples of emerging zoonotic viral encephalitides. For these flaviviruses, only a small proportion of those infected develop clinical features, and these may range from a non-specific flu-like illness to a severe fatal meningoencephalitis, often with Parkinsonian features, or a poliomyelitis-like flaccid paralysis. The factors governing the clinical presentations, and outcome of flavivirus infections are poorly understood, but studies have looked at viral virulence determinants and the host immune response. Previous studies on JEV have suggested that the distribution of the four genotypes across Asia may relate to the differing clinical epidemiology (epidemic disease in the north, endemic disease in the south). However, new data based on the complete nucleotide sequence of a virus representing one of the oldest lineages, and phylogenetic analyses of all JEV strains for which genetic data are available, suggest that the distribution is best explained in terms of the virus' origin in the Indonesia-Malaysia region (where all genotypes have been found), and the spread of the more recent genotypes to new geographical areas. Clinical studies have shown that innate immunity, as manifested by interferon alpha levels, is important in JEV and other flaviviruses, but treatment with interferon alpha did not improve the outcome. A failure of the humoral immune response, is associated with death from encephalitis caused by JEV and WNV. Cellular immunity has been less well characterized, but CD8+ and CD4+ T cells are thought to be important.
    Matched MeSH terms: Encephalitis, Japanese/epidemiology*
  5. Sinniah M
    PMID: 2561714
    JE is neither classified as an entity in the Malaysian Medical records system nor is it a notifiable disease but is grouped under the broad umbrella of viral encephalitis. There is no centralised program by the Ministry of Health specially for JE surveillance and control. JE is endemic, occurs sporadically throughout the country all year round. Asymptomatic inapparent infections have been found to be more frequent than acute clinical encephalitis cases, judging from results of previous serosurveys (Pond et al., 1954). JE vaccination has never been tried in Malaysia. In a relative sense, JEV infection unlike dengue virus infection, does not appear to be much of a problem in Malaysia. Perhaps, the laboratory confirmed cases represent only a small proportion of the total hospitalised cases that actually occurred. The reasons may be that these cases could not be confirmed by laboratory tests due to improper timing or failure to obtain the second serum specimen, or failure to perform lumbar puncture on patient's refusal. Attempts to improve the case detection rate of JE in Malaysia should be made namely, by increasing clinical index of suspicion, instituting better specimen collection procedures and by adopting rapid diagnostic tests.
    Matched MeSH terms: Encephalitis, Japanese/epidemiology*
  6. Simpson DI, Bowen ET, Platt GS, Way H, Smith CE, Peto S, et al.
    Trans R Soc Trop Med Hyg, 1970;64(4):503-10.
    PMID: 4394986
    Matched MeSH terms: Encephalitis, Japanese/epidemiology*
  7. Schuh AJ, Guzman H, Tesh RB, Barrett AD
    Vector Borne Zoonotic Dis, 2013 Jul;13(7):479-88.
    PMID: 23590316 DOI: 10.1089/vbz.2011.0870
    Five genotypes (GI-V) of Japanese encephalitis virus (JEV) have been identified, all of which have distinct geographical distributions and epidemiologies. It is thought that JEV originated in the Indonesia-Malaysia region from an ancestral virus. From that ancestral virus GV diverged, followed by GIV, GIII, GII, and GI. Genotype IV appears to be confined to the Indonesia-Malaysia region, as GIV has been isolated in Indonesia from mosquitoes only, while GV has been isolated on three occasions only from a human in Malaysia and mosquitoes in China and South Korea. In contrast, GI-III viruses have been isolated throughout Asia and Australasia from a variety of hosts. Prior to this study only 13 JEV isolates collected from the Indonesian archipelago had been studied genetically. Therefore the sequences of the envelope (E) gene of 24 additional Indonesian JEV isolates, collected throughout the archipelago between 1974 and 1987, were determined and a series of molecular adaptation analyses were performed. Phylogenetic analysis indicated that over a 14-year time span three genotypes of JEV circulated throughout Indonesia, and a statistically significant association between the year of virus collection and genotype was revealed: isolates collected between 1974 and 1980 belonged to GII, isolates collected between 1980 and 1981 belonged to GIV, and isolates collected in 1987 belonged to GIII. Interestingly, three of the GII Indonesian isolates grouped with an isolate that was collected during the JE outbreak that occurred in Australia in 1995, two of the GIII Indonesian isolates were closely related to a Japanese isolate collected 40 years previously, and two Javanese GIV isolates possessed six amino acid substitutions within the E protein when compared to a previously sequenced GIV isolate collected in Flores. Several amino acids within the E protein of the Indonesian isolates were found to be under directional evolution and/or co-evolution. Conceivably, the tropical climate of the Indonesia/Malaysia region, together with its plethora of distinct fauna and flora, may have driven the emergence and evolution of JEV. This is consistent with the extensive genetic diversity seen among the JEV isolates observed in this study, and further substantiates the hypothesis that JEV originated in the Indonesia-Malaysia region.
    Matched MeSH terms: Encephalitis, Japanese/epidemiology*
  8. Ree HI, Chen YK, Chow CY
    Med J Malaya, 1969 Jun;23(4):293-5.
    PMID: 4310350
    Matched MeSH terms: Encephalitis, Japanese/epidemiology*
  9. Pyke AT, Williams DT, Nisbet DJ, van den Hurk AF, Taylor CT, Johansen CA, et al.
    Am J Trop Med Hyg, 2001 Dec;65(6):747-53.
    PMID: 11791969
    In mid-January 2000, the reappearance of Japanese encephalitis (JE) virus activity in the Australasian region was first demonstrated by the isolation of JE virus from 3 sentinel pigs on Badu Island in the Torres Strait. Further evidence of JE virus activity was revealed through the isolation of JE virus from Culex gelidus mosquitoes collected on Badu Island and the detection of specific JE virus neutralizing antibodies in 3 pigs from Saint Pauls community on Moa Island. Nucleotide sequencing and phylogenetic analyses of the premembrane and envelope genes were performed which showed that both the pig and mosquito JE virus isolates (TS00 and TS4152, respectively) clustered in genotype I, along with northern Thai, Cambodian, and Korean isolates. All previous Australasian JE virus isolates belong to genotype II, along with Malaysian and Indonesian isolates. Therefore, for the first time, the appearance and transmission of a second genotype of JE virus in the Australasian region has been demonstrated.
    Matched MeSH terms: Encephalitis, Japanese/epidemiology*
  10. PATERSON PY, LEY HL, WISSEMAN CL, POND WL, SMADEL JE, DIERCKS FH, et al.
    Am J Hyg, 1952 Nov;56(3):320-33.
    PMID: 12996500
    Matched MeSH terms: Encephalitis, Japanese/epidemiology*
  11. Moore SM
    PLoS Negl Trop Dis, 2021 10;15(10):e0009385.
    PMID: 34644296 DOI: 10.1371/journal.pntd.0009385
    Japanese encephalitis virus (JEV) is a major cause of neurological disability in Asia and causes thousands of severe encephalitis cases and deaths each year. Although Japanese encephalitis (JE) is a WHO reportable disease, cases and deaths are significantly underreported and the true burden of the disease is not well understood in most endemic countries. Here, we first conducted a spatial analysis of the risk factors associated with JE to identify the areas suitable for sustained JEV transmission and the size of the population living in at-risk areas. We then estimated the force of infection (FOI) for JE-endemic countries from age-specific incidence data. Estimates of the susceptible population size and the current FOI were then used to estimate the JE burden from 2010 to 2019, as well as the impact of vaccination. Overall, 1,543.1 million (range: 1,292.6-2,019.9 million) people were estimated to live in areas suitable for endemic JEV transmission, which represents only 37.7% (range: 31.6-53.5%) of the over four billion people living in countries with endemic JEV transmission. Based on the baseline number of people at risk of infection, there were an estimated 56,847 (95% CI: 18,003-184,525) JE cases and 20,642 (95% CI: 2,252-77,204) deaths in 2019. Estimated incidence declined from 81,258 (95% CI: 25,437-273,640) cases and 29,520 (95% CI: 3,334-112,498) deaths in 2010, largely due to increases in vaccination coverage which have prevented an estimated 314,793 (95% CI: 94,566-1,049,645) cases and 114,946 (95% CI: 11,421-431,224) deaths over the past decade. India had the largest estimated JE burden in 2019, followed by Bangladesh and China. From 2010-2019, we estimate that vaccination had the largest absolute impact in China, with 204,734 (95% CI: 74,419-664,871) cases and 74,893 (95% CI: 8,989-286,239) deaths prevented, while Taiwan (91.2%) and Malaysia (80.1%) had the largest percent reductions in JE burden due to vaccination. Our estimates of the size of at-risk populations and current JE incidence highlight countries where increasing vaccination coverage could have the largest impact on reducing their JE burden.
    Matched MeSH terms: Encephalitis, Japanese/epidemiology
  12. Montini Maluda MC, Jelip J, Ibrahim MY, Suleiman M, Jeffree MS, Binti Aziz AF, et al.
    Am J Trop Med Hyg, 2020 08;103(2):864-868.
    PMID: 32524958 DOI: 10.4269/ajtmh.19-0928
    Japanese encephalitis (JE) is endemic in Malaysia. Although JE vaccination is practiced in the neighboring state of Sarawak for a long time, little is known about JE in Sabah state in Borneo. As a result, informed policy formulation for JE in Sabah has not been accomplished. In the present study, we have analyzed JE cases that have been reported to the Sabah State Health Department from 2000 to 2018. A total of 92 JE cases were reported during 19 years, and three-fourths of the cases were attributed to children. The estimated mean incidence for JE cases is 0.161/100,000 population. Japanese encephalitis was predominant in Sabah during June, July, and August, peaking in July. In most cases, pigs were absent within a 400-m radius of the place of residence. We could not establish any relationship between the mapping of JE cases and the number of piggeries in each district. We could not establish a relationship between average rainfall and JE cases, either. We propose the cases reported are possibly showing the tip of an iceberg and continuous surveillance is needed, as JE is a public health challenge in Sabah.
    Matched MeSH terms: Encephalitis, Japanese/epidemiology*
  13. Ma SP, Yoshida Y, Makino Y, Tadano M, Ono T, Ogawa M
    Am J Trop Med Hyg, 2003 Aug;69(2):151-4.
    PMID: 13677370
    A 240-nucleotide sequence of the capsid/premembrane gene region of 23 Japanese encephalitis virus (JEV) strains isolated in Tokyo and Oita, Japan was determined and phylogenetic analyses were performed. All the strains clustered into two distinct genotypes (III and I). All strains isolated before 1991 belonged to genotype III, while those isolated after 1994 belonged to genotype I. In addition, the strains of the genotype I isolated in Japan showed a close genetic relationship with those from Korea and Malaysia.
    Matched MeSH terms: Encephalitis, Japanese/epidemiology*
  14. Kumar K, Arshad SS, Selvarajah GT, Abu J, Toung OP, Abba Y, et al.
    Acta Trop, 2018 Sep;185:219-229.
    PMID: 29856986 DOI: 10.1016/j.actatropica.2018.05.017
    Japanese encephalitis (JE) is a vector-borne zoonotic disease caused by the Japanese encephalitis virus (JEV). It causes encephalitis in human and horses, and may lead to reproductive failure in sows. The first human encephalitis case in Malaya (now Malaysia) was reported during World War II in a British prison in 1942. Later, encephalitis was observed among race horses in Singapore. In 1951, the first JEV was isolated from the brain of an encephalitis patient. The true storyline of JE exposure among humans and animals has not been documented in Malaysia. In some places such as Sarawak, JEV has been isolated from mosquitoes before an outbreak in 1992. JE is an epidemic in Malaysia except Sarawak. There are four major outbreaks reported in Pulau Langkawi (1974), Penang (1988), Perak and Negeri Sembilan (1998-1999), and Sarawak (1992). JE is considered endemic only in Sarawak. Initially, both adults and children were victims of JE in Malaysia, however, according to the current reports; JE infection is only lethal to children in Malaysia. This paper describes a timeline of JE cases (background of each case) from first detection to current status, vaccination programs against JE, diagnostic methods used in hospitals and factors which may contribute to the transmission of JE among humans and animals in Malaysia.
    Matched MeSH terms: Encephalitis, Japanese/epidemiology*
  15. Kumar K, Arshad SS, Selvarajah GT, Abu J, Toung OP, Abba Y, et al.
    Trop Anim Health Prod, 2018 Apr;50(4):741-752.
    PMID: 29243139 DOI: 10.1007/s11250-017-1490-6
    Japanese encephalitis (JE) is vector-borne zoonotic disease which causes encephalitis in humans and horses. Clinical signs for Japanese encephalitis virus (JEV) infection are not clearly evident in the majority of affected animals. In Malaysia, information on the prevalence of JEV infection has not been established. Thus, a cross-sectional study was conducted during two periods, December 2015 to January 2016 and March to August in 2016, to determine the prevalence and risk factors in JEV infections among animals and birds in Peninsular Malaysia. Serum samples were harvested from the 416 samples which were collected from the dogs, cats, water birds, village chicken, jungle fowls, long-tailed macaques, domestic pigs, and cattle in the states of Selangor, Perak, Perlis, Kelantan, and Pahang. The serum samples were screened for JEV antibodies by commercial IgG ELISA kits. A questionnaire was also distributed to obtain information on the animals, birds, and the environmental factors of sampling areas. The results showed that dogs had the highest seropositive rate of 80% (95% CI: ± 11.69) followed by pigs at 44.4% (95% CI: ± 1.715), cattle at 32.2% (95% CI: ± 1.058), birds at 28.9% (95% CI: ± 5.757), cats at 15.6% (95% CI: ± 7.38), and monkeys at 14.3% (95% CI: ± 1.882). The study also showed that JEV seropositivity was high in young animals and in areas where mosquito vectors and migrating birds were prevalent.
    Matched MeSH terms: Encephalitis, Japanese/epidemiology
  16. Krishnan J, Mathiarasan L
    J Vector Borne Dis, 2019 1 9;55(3):189-196.
    PMID: 30618444 DOI: 10.4103/0972-9062.249127
    Background & objectives: : Increase of vector-borne diseases (VBDs) in India has posed a question on the situation in Lakshadweep Islands, where VBDs are reported from time-to-time. The present investigation was aimed to assess the faunastic situation of the prevailing vectors along with their breeding sites in different islands of the Lakshadweep.

    Methods: : Extensive surveys were carried out from November 2017 to January 2018 (post-monsoon season) randomly in the nine inhabited islands of Lakshadweep for conducting faunastic studies on mosquitoes and to know the basic binomics like breeding and resting preference of mosquitoes. The study islands included, Kavaratti, Agatti, Chetlat, Bitra, Amini, Kadmath, Andrott, Kalpeni and Kiltan. Both immature and adult collections were carried out by standard/appropriate sampling techniques. The obtained data were calculated and analysed in terms of different entomological indices.

    Results: : A total of 3356 mosquitoes were collected during the study period which comprised of 16 species from nine genera. Out of the 16 species, six belonged to mosquito vectors. The collection included malaria vector, Anopheles stephensi; Japanese encephalitis vector, Culex tritaeniorhynchus; Bancroftian filariasis vector, Cx. quinquefasciatus; Brugian filariasis vector, Mansonia uniformis; and dengue and chikungunya vectors, Stegomya albopicta and St. aegypti. Stegomya albopicta was the most predominant species observed constituting 54% of the catch, followed by Cx. quinquefasciatus, An. stephensi, Cx. tritaeniorhynchus, and St. aegypti constituting 10.5, 6, 3 and 1.2%, respectively. Apart from vector species many non-vectors such as Heizmannia chandi, An. subpictus, An. varuna, Cx. sitiens, Cx. minutissimus, Cx. rubithoracis, Fredwardsius vittatus, Lutzia fuscana, Malaya genurostris and Armigeres subalbatus were also present in the study area. In Kavaratti Island, the capital of Lakshadweep, a non-vector species of sandfly, Sergentomyia (Parrotomyia) babu was observed during the indoor resting collection. The major breeding sites which supported various mosquito species included, discarded plastic containers, tree holes, open sintex tanks (water storage tanks), unused wells, discarded tyres, discarded iron pots, unused and damaged boats, cement tanks, pleated plastic sheets, coral holes, pits and irrigation canals, discarded washing machines, and Colocasia plant leaf axils. Breteau index ranged between 65.3 and 110, CI ranged between 63.64 and 72.41; and HI ranged between 38.46 and 70 among the various islands.

    Interpretation & conclusion: : Entomological indices such as house index (HI), breteau index (BI) and pupal index (PI) were high in all the nine islands and exceeded the threshold levels specified by WHO, indicating high risk for dengue virus transmission in case of outbreaks. Occurrence of vector as well as non-vector species indicates that the global change in climate is causing notable changes in terms of breeding of vector and non-vector species in the islands. With the reported cases of VBDs and the presence of vectors species in Lakshadweep Islands, a stringent control measure needs to be implemented at the Lakshadweep Islands.

    Matched MeSH terms: Encephalitis, Japanese/epidemiology
  17. Khor CS, Mohd-Rahim NF, Hassan H, Tan KK, Zainal N, Teoh BT, et al.
    J Med Virol, 2020 08;92(8):956-962.
    PMID: 31814135 DOI: 10.1002/jmv.25649
    Dengue virus (DENV), Japanese encephalitis virus (JEV), and Zika virus (ZIKV) are mosquito-borne flavivirus of medical importance in tropical countries such as Malaysia. However, much remains unknown regarding their prevalence among the underserved indigenous people (Orang Asli) living in communities in the forest fringe areas of Peninsular Malaysia. Information on the prevalence of diseases is necessary to elevate the effectiveness of disease control and preventive measures. This study aimed to determine the seroprevalence of the three major flaviviruses among the Orang Asli and investigate the association between demographic factors and seropositivities. Sampling activities were conducted in the Orang Asli villages to obtain serum samples and demographic data from consenting volunteers. The presence of DENV, JEV, and ZIKV immunoglobulin G (IgG) antibodies in the sera were examined using commercial enzyme-linked immunosorbent assay kits. A focus reduction neutralization assay was performed to measure virus-specific neutralizing antibodies. A total of 872 serum samples were obtained from the Orang Asli volunteers. Serological assay results revealed that DENV IgG, JEV IgG, and ZIKV IgG seropositivities among the Orang Asli were at 4.9%, 48.4%, and 13.2%, respectively. Neutralizing antibodies (FRNT50 ≥ 1:40) against JEV and ZIKV were found in 86.7% and 100.0%, respectively, out of the samples tested. Positive serology to all three viruses corresponded significantly to the age of the volunteers with increasing seropositivity in older volunteers. Findings from the study suggest that Orang Asli are at significant risk of contracting JEV and ZIKV infections despite the lack of active transmission of the viruses in the country.
    Matched MeSH terms: Encephalitis, Japanese/epidemiology*
  18. Kari K, Liu W, Gautama K, Mammen MP, Clemens JD, Nisalak A, et al.
    BMC Med, 2006;4:8.
    PMID: 16603053
    Japanese encephalitis (JE) is presumed to be endemic throughout Asia, yet only a few cases have been reported in tropical Asian countries such as Indonesia, Malaysia and the Philippines. To estimate the true disease burden due to JE in this region, we conducted a prospective, hospital-based surveillance with a catchment population of 599,120 children less than 12 years of age in Bali, Indonesia, from July 2001 through December 2003.
    Matched MeSH terms: Encephalitis, Japanese/epidemiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links