Lung cancer is a highly invasive and prevalent disease with ineffective first-line treatment and remains the leading cause of cancer death in men and women. Despite the improvements in diagnosis and therapy, the prognosis and outcome of lung cancer patients is still poor. This could be associated with the lack of effective first-line oncology drugs, formation of resistant tumors and non-optimal administration route. Therefore, the repurposing of existing drugs currently used for different indications and the introduction of a different method of drug administration could be investigated as an alternative to improve lung cancer therapy. This review describes the rationale and development of repositioning of drugs for lung cancer treatment with emphasis on inhalation. The review includes the current progress of repurposing non-cancer drugs, as well as current chemotherapeutics for lung malignancies via inhalation. Several potential non-cancer drugs such as statins, itraconazole and clarithromycin, that have demonstrated preclinical anti-cancer activity, are also presented. Furthermore, the potential challenges and limitations that might hamper the clinical translation of repurposed oncology drugs are described.
The objectives of this study were to develop and characterize itraconazole (ITZ)-loaded nanostructured lipid carriers (NLCs) and to study their potential for drug delivery into the brain. Precirol(®) ATO 5 and Transcutol(®) HP were selected as the lipid phase, and Tween(®) 80 and Solutol(®) HS15 as surfactants. The ITZ-NLCs were prepared by a hot and high-pressure homogenization method. The entrapment efficiency for the best formulation batch was analyzed using high-performance liquid chromatography and was found to be 70.5%±0.6%. The average size, zeta potential, and polydispersity index for the ITZ-NLCs used for animal studies were found to be 313.7±15.3 nm, -18.7±0.30 mV, and 0.562±0.070, respectively. Transmission electron microscopy confirmed that ITZ-NLCs were spherical in shape, with a size of less than 200 nm. Differential scanning calorimetry and X-ray diffractometry analysis showed that ITZ was encapsulated in the lipid matrix and present in the amorphous form. The in vitro release study showed that ITZ-NLCs achieved a sustained release, with cumulative release of 80.6%±5.3% up to 24 hours. An in vivo study showed that ITZ-NLCs could increase the ITZ concentration in the brain by almost twofold. These results suggest that ITZ-NLCs can be exploited as nanocarriers to achieve sustained release and brain-targeted delivery.
Feline sporotrichosis has been reported in Malaysia since the 1990's. Since then, studies have revealed that clinical clade D, Sporothrix schenckii sensu stricto, of a single clonal strain is the most common cause of this disease in Malaysia. The prevalence of a single clonal strain from a clinical clade was never before reported in Asia in a specific geographical niche. This raises the possibility of a process of purifying selection and subsequent clonal proliferation. While agricultural practices may serve as the selective pressure, direct causality has yet to be established. Studies into the thermo-tolerability of the Malaysian clonal strain of S. schenckii sensu stricto revealed that a small minority of clinical isolates have the capacity to grow at 37℃, while the majority displayed low susceptibility to commonly used antifungals in clinical practice, such as itraconazole (ITZ) and terbinafine (TRB). Despite unestablished breakpoints, suspected resistance (MIC > 4 mg/mL) towards amphotericin B (AMB) and fluconazole (FLC) was recorded in the isolates. This explains the often lack of clinical response in feline patients treated with recommended doses of antifungals, including ITZ. Coupled with the potential zoonotic transmission to clients and veterinarians, protracted treatment period, and subsequent cost of treatment, prognosis of feline sporotrichosis is often regarded to be poor. The use of a higher dose of ITZ has been reported, and an adoption of this high-dose treatment regime is reported in this manuscript, with complete cure achieved in cases of recalcitrant and/or unresponsive feline sporotrichosis, which would otherwise be euthanized.
Itraconazole and fluconazole are oral antifungal drugs, which have a wide spectrum antifungal activity and better efficacy than the older drugs. However, both drugs have been associated with hepatotoxicity in susceptible patients. The mechanism of antifungal drug-induced hepatotoxicity is largely unknown. Therefore, the aim of this present study was to investigate and compare the hepatotoxicity induced by these drugs in vivo. Rats were treated intraperitoneally with itraconazole or fluconazole either single (0, 10, 100 and 200 mg/kg) or subchronic (0, 10, 50 and 100 mg/kg per day for 14 days) doses. Plasma and liver samples were taken at the end of the study. A statistically significant and dose dependent increase of plasma alanine aminotransferase (ALT) and alkaline phosphatase (ALP) activities were detected in the subchronic itraconazole-treated group. In addition, dose-dependent hepatocellular necrosis, degeneration of periacinar and mizonal hepatocytes, bile duct hyperplasia and biliary cirrhosis and giant cell granuloma were observed histologically in the same group. Interestingly, fluconazole treated rats had no significant increase in transaminases for both single and subchronic groups. In the subchronic fluconazole treated rats, only mild degenerative changes of centrilobular hepatocytes were observed. These results demonstrated that itraconazole was a more potent hepatotoxicant than fluconazole in vivo in rats.