Affiliations 

  • 1 Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur (RCMP UniKL), Ipoh, Perak, Malaysia; Respiratory Technology, Woolcock Institute of Medical Research, and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, NSW 2037, Australia; Centre for Lung Cancer Research, 431 Glebe Point Road, 2037, Australia. Electronic address: whlee@unikl.edu.my
  • 2 Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur (RCMP UniKL), Ipoh, Perak, Malaysia; Respiratory Technology, Woolcock Institute of Medical Research, and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, NSW 2037, Australia; Centre for Lung Cancer Research, 431 Glebe Point Road, 2037, Australia
  • 3 Respiratory Technology, Woolcock Institute of Medical Research, and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, NSW 2037, Australia; Centre for Lung Cancer Research, 431 Glebe Point Road, 2037, Australia
  • 4 Section of Bioengineering Technology, Universiti Kuala Lumpur (UniKL) MICET, Alor Gajah, Melaka, Malaysia
Adv Drug Deliv Rev, 2018 08;133:107-130.
PMID: 30189271 DOI: 10.1016/j.addr.2018.08.012

Abstract

Lung cancer is a highly invasive and prevalent disease with ineffective first-line treatment and remains the leading cause of cancer death in men and women. Despite the improvements in diagnosis and therapy, the prognosis and outcome of lung cancer patients is still poor. This could be associated with the lack of effective first-line oncology drugs, formation of resistant tumors and non-optimal administration route. Therefore, the repurposing of existing drugs currently used for different indications and the introduction of a different method of drug administration could be investigated as an alternative to improve lung cancer therapy. This review describes the rationale and development of repositioning of drugs for lung cancer treatment with emphasis on inhalation. The review includes the current progress of repurposing non-cancer drugs, as well as current chemotherapeutics for lung malignancies via inhalation. Several potential non-cancer drugs such as statins, itraconazole and clarithromycin, that have demonstrated preclinical anti-cancer activity, are also presented. Furthermore, the potential challenges and limitations that might hamper the clinical translation of repurposed oncology drugs are described.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.