METHODS: Application of nanotechnology in medicine have perceived a great evolution during past few decades. Nanoemulsion, submicron sized thermodynamically stable distribution of two immiscible liquids, has gained extensive importance as a nanocarrier to improve chemotherapies seeking to overcome the limitations of drug solubilization, improving systemic delivery of the chemotherapeutics to the site of action to achieve a promising inhibitory in tumor growth profile with reduced systemic toxicity.
RESULTS AND CONCLUSION: This review has focused on potential application of nanoemulsion in the translational research and its role in chemotherapy using oral, parenteral and transdermal route to enhance systemic availability of poorly soluble drug. In summary, nanoemulsion is a multifunctional nanocarrier capable of enhancing drug delivery potential of cytotoxic agents, thereby, can improve the outcomes of cancer treatment by increasing the life-span of the patient and quality of life, however, further clinical research and characterization of interactive reactions should need to be explored.
AREAS COVERED: This comprehensive review deals with the survey, performed through different electronic databases, regarding various challenges and their solutions attained by fabricating delivery systems like nanoparticles, micelle, nanocapsules, nanochannels, and liposomes. It also covers the synthesis of novel LAPA-conjugates for diagnostic purpose.
EXPERT OPINION: Unfortunately, clinical use of LAPA is restricted because of its extensive albumin binding capacity, poor oral bioavailability, and poor aqueous solubility. LAPA is marketed as the oral tablet only. Therefore, it becomes imperative to formulate alternate efficient multiparticulate or nano-delivery systems for administration through non-oral routes, for active/passive targeting, and to scale-up by pharmaceutical scientists followed by their clinical trials by clinical experts. LAPA combinations with capecitabine and letrozole should also be tried for breast cancer treatment.
STATEMENT OF SIGNIFICANCE: It is well established that dendrimers have demonstrated promising potentials for drug delivery. However, the inherent toxicity poses challenges for its clinical translation. In this regard, PEGylation has helped mitigate some of the toxicity concerns of dendrimers and have paved the way forward for testing its translational potentials. The review is a collection of articles demonstrating the utility of PEGylation of the most studied PAMAM dendrimers. To our knowledge, this is a first such attempt to draw reader's attention, specifically, towards PEGylated PAMAM dendrimers.
METHODS: This paper presents two hybrid methodologies that combines optimal control theory with multi-objective swarm and evolutionary algorithms and compares the performance of these methodologies with multi-objective swarm intelligence algorithms such as MOEAD, MODE, MOPSO and M-MOPSO. The hybrid and conventional methodologies are compared by addressing CMOOP.
RESULTS: The minimized tumor and drug concentration results obtained by the hybrid methodologies demonstrate that they are not only superior to pure swarm intelligence or evolutionary algorithm methodologies but also consumes far less computational time. Further, Second Order Sufficient Condition (SSC) is also used to verify and validate the optimality condition of the constrained multi-objective problem.
CONCLUSION: The proposed methodologies reduce chemo-medicine administration while maintaining effective tumor killing. This will be helpful for oncologist to discover and find the optimum dose schedule of the chemotherapy that reduces the tumor cells while maintaining the patients' health at a safe level.