Displaying publications 1 - 20 of 97 in total

Abstract:
Sort:
  1. Pandey M, Choudhury H, Yeun OC, Yin HM, Lynn TW, Tine CLY, et al.
    Curr Pharm Biotechnol, 2018;19(4):276-292.
    PMID: 29874994 DOI: 10.2174/1389201019666180605125234
    BACKGROUND: Targeting chemotherapeutic agents to the tumor tissues and achieving accumulation with ideal release behavior for desired therapy requires an ideal treatment strategy to inhibit division of rapid growing cancerous cells and as an outcome improve patient's quality of life. However, majority of the available anticancer therapies are well known for their systemic toxicities and multidrug resistance.

    METHODS: Application of nanotechnology in medicine have perceived a great evolution during past few decades. Nanoemulsion, submicron sized thermodynamically stable distribution of two immiscible liquids, has gained extensive importance as a nanocarrier to improve chemotherapies seeking to overcome the limitations of drug solubilization, improving systemic delivery of the chemotherapeutics to the site of action to achieve a promising inhibitory in tumor growth profile with reduced systemic toxicity.

    RESULTS AND CONCLUSION: This review has focused on potential application of nanoemulsion in the translational research and its role in chemotherapy using oral, parenteral and transdermal route to enhance systemic availability of poorly soluble drug. In summary, nanoemulsion is a multifunctional nanocarrier capable of enhancing drug delivery potential of cytotoxic agents, thereby, can improve the outcomes of cancer treatment by increasing the life-span of the patient and quality of life, however, further clinical research and characterization of interactive reactions should need to be explored.

    Matched MeSH terms: Antineoplastic Agents/administration & dosage*
  2. Wong TW, Sriamornsak P, Dass CR
    Curr Drug Deliv, 2018 1 2;14(8):1052.
    PMID: 29290178 DOI: 10.2174/156720181408171213150655
    Matched MeSH terms: Antineoplastic Agents/administration & dosage*
  3. Bonde GV, Yadav SK, Chauhan S, Mittal P, Ajmal G, Thokala S, et al.
    Expert Opin Drug Deliv, 2018 05;15(5):495-507.
    PMID: 29521126 DOI: 10.1080/17425247.2018.1449832
    INTRODUCTION: Breast cancer stands the second prominent cause of death among women. For its efficient treatment, Lapatinib (LAPA) was developed as a selective tyrosine kinase inhibitor of receptors, overexpressed by breast cancer cells. Various explored delivery strategies for LAPA indicated its controlled release with enhanced aqueous solubility, improved bioavailability, decreased plasma protein binding, reduced dose and toxicity to the other organs with maximized clinical efficacy, compared to its marketed tablet formulation.

    AREAS COVERED: This comprehensive review deals with the survey, performed through different electronic databases, regarding various challenges and their solutions attained by fabricating delivery systems like nanoparticles, micelle, nanocapsules, nanochannels, and liposomes. It also covers the synthesis of novel LAPA-conjugates for diagnostic purpose.

    EXPERT OPINION: Unfortunately, clinical use of LAPA is restricted because of its extensive albumin binding capacity, poor oral bioavailability, and poor aqueous solubility. LAPA is marketed as the oral tablet only. Therefore, it becomes imperative to formulate alternate efficient multiparticulate or nano-delivery systems for administration through non-oral routes, for active/passive targeting, and to scale-up by pharmaceutical scientists followed by their clinical trials by clinical experts. LAPA combinations with capecitabine and letrozole should also be tried for breast cancer treatment.

    Matched MeSH terms: Antineoplastic Agents/administration & dosage*
  4. Thong QX, Biabanikhankahdani R, Ho KL, Alitheen NB, Tan WS
    Sci Rep, 2019 03 08;9(1):3945.
    PMID: 30850643 DOI: 10.1038/s41598-019-40388-x
    Multifunctional nanocarriers displaying specific ligands and simultaneously response to stimuli offer great potentials for targeted and controlled drug delivery. Several synthetic thermally-responsive nanocarriers have been studied extensively for hyperthermia incorporated chemotherapy. However, no information is available on the application of virus-like particle (VLP) in thermally-controlled drug delivery systems. Here, we describe the development of a novel multifunctional nanovehicle based on the VLP of Macrobrachium rosenbergii nodavirus (MrNVLP). Folic acid (FA) was covalently conjugated to lysine residues located on the surface of MrNVLP, while doxorubicin (Dox) was loaded inside the VLP using an infusion method. This thermally-responsive nanovehicle, namely FA-MrNVLP-Dox, released Dox in a sustained manner and the rate of drug release increased in response to a hyperthermia temperature at 43 °C. The FA-MrNVLP-Dox enhanced the delivery of Dox to HT29 cancer cells expressing high level of folate receptor (FR) as compared to CCD841CoN normal cells and HepG2 cancer cells, which express low levels of FR. As a result, FA-MrNVLP-Dox increased the cytotoxicity of Dox on HT29 cells, and decreased the drug's cytotoxicity on CCD841CoN and HepG2 cells. This study demonstrated the potential of FA-MrNVLP-Dox as a thermally-responsive nanovehicle for targeted delivery of Dox to cancer cells rich in FR.
    Matched MeSH terms: Antineoplastic Agents/administration & dosage*
  5. Hejmady S, Pradhan R, Alexander A, Agrawal M, Singhvi G, Gorain B, et al.
    Drug Discov Today, 2020 12;25(12):2227-2244.
    PMID: 33011342 DOI: 10.1016/j.drudis.2020.09.031
    A tumor serves as a major avenue in drug development owing to its complexity. Conventional therapies against tumors possess limitations such as suboptimal therapeutic efficacy and extreme side effects. These display poor pharmacokinetics and lack specific targeting, with non-specific distribution resulting in systemic toxicity. Therefore, nanocarriers targeted against cancers are increasingly being explored. Nanomedicine aids in maintaining a balance between efficacy and toxicity by specifically accumulating in tumors. Nanotherapeutics possess advantages such as increased solubility of chemotherapeutics, encapsulation of multiple drugs and improved biodistribution, and can ensure tumor-directed drug delivery and release via the approaches of passive targeting and active targeting. This review aims to offer a general overview of the current advances in tumor-targeting nanocarriers for clinical and diagnostic use.
    Matched MeSH terms: Antineoplastic Agents/administration & dosage*
  6. Seyed MA, Jantan I, Bukhari SN
    Biomed Res Int, 2014;2014:536508.
    PMID: 25247178 DOI: 10.1155/2014/536508
    The treatment of most cancers is still inadequate, despite tremendous steady progress in drug discovery and effective prevention. Nature is an attractive source of new therapeutics. Several medicinal plants and their biomarkers have been widely used for the treatment of cancer with less known scientific basis of their functioning. Although a wide array of plant derived active metabolites play a role in the prevention and treatment of cancer, more extensive scientific evaluation of their mechanisms is still required. Styryl-lactones are a group of secondary metabolites ubiquitous in the genus Goniothalamus that have demonstrated to possess antiproliferative activity against cancer cells. A large body of evidence suggests that this activity is associated with the induction of apoptosis in target cells. In an effort to promote further research on the genus Goniothalamus, this review offers a broad analysis of the current knowledge on Goniothalamin (GTN) or 5, 6, dihydro-6-styryl-2-pyronone (C13H12O2), a natural occurring styryl-lactone. Therefore, it includes (i) the source of GTN and other metabolites; (ii) isolation, purification, and (iii) the molecular mechanisms of actions of GTN, especially the anticancer properties, and summarizes the role of GTN which is crucial for drug design, development, and application in future for well-being of humans.
    Matched MeSH terms: Antineoplastic Agents/administration & dosage
  7. Muthoosamy K, Bai RG, Manickam S
    Curr Drug Deliv, 2014;11(6):701-18.
    PMID: 24909150
    Motivated by the success and exhaustive research on carbon nanotubes (CNTs) based drug delivery, graphene, a two-dimensional; honey-comb crystal lattice has emerged as the rising star in recent years. Graphene is a flat monolayer of carbon atoms that holds many promising properties such as unparalleled thermal conductivity, remarkable electronic properties, and most intriguingly higher planar surface and superlative mechanical strength, which are attractive in biotechnological applications. Delivery of anti-cancer drugs using graphene and its derivatives has sparked major interest in this emerging field. The anti-cancer therapies often pose a limitation of insolubility, administration problems and cell penetration ability. In addition, systemic toxicity caused by lack of selective targeting towards cancer cells and inefficient distribution limits its clinical applications. Graphene nanocomposite is a promising tool to address these drawbacks. This review will focus on various synthesis and functionalization of graphene and graphene oxide for providing better solubility and targeted drug delivery at cancer cells. A more advanced and 'smart' graphene hybrid nanostructures that have several functionalities such as stimulus-response mediated delivery, imaging at release sites as well as transfection into cancer cells are also presented. A brief description on the challenges and perspectives for future research in this field is also discussed.
    Matched MeSH terms: Antineoplastic Agents/administration & dosage*
  8. Lee KR, Subrayan V, Win MM, Fadhilah Mohamad N, Patel D
    J Thromb Thrombolysis, 2014 Jul;38(1):87-9.
    PMID: 24046068 DOI: 10.1007/s11239-013-0988-7
    All-trans retinoic acid (ATRA) and Idarubicin are part of the AIDA protocol employed for the treatment of Acute promyelocytic leaukaemia (APML) and has been associated with marked improvement in the prognosis. However, it is known to worsen the haematological picture during the course of induction of therapy. Herein, we present a case of an APML patient who developed a rare documented incidence of cerebral sinus thrombosis, first noticed as an ophthalmology referral. This 22 year old lady, a known APML patient was then started on chemotherapy based on AIDA protocol but 17 days into the initiation of therapy, she began to complain of blurred vision on the right eye. Anterior segments were normal but both fundi showed papilloedema with peripapillary haemorrhages. A contrast MRI that was then ordered showed multiple filling defects in numerous venous sinuses. She was started on anticoagulant treatment and the findings resolved. Though a rare case of its side-effects, ATRA usage in APML has a multitude of presentations since its primary pathology lies in the inherent pro-coagulant potential.
    Matched MeSH terms: Antineoplastic Agents/administration & dosage
  9. Elsherbieny E, Choo P, Alzoubi A
    Hematol Oncol Stem Cell Ther, 2008 4 1;1(2):124-9.
    PMID: 20063540
    Matched MeSH terms: Antineoplastic Agents/administration & dosage*
  10. Yousaf A, Hamid SA, Bunnori NM, Ishola AA
    Drug Des Devel Ther, 2015;9:2831-8.
    PMID: 26082613 DOI: 10.2147/DDDT.S83213
    Research on the therapeutic applications of calixarene derivatives is an emerging area of interest. The anticancer activity of various functionalized calixarenes has been reported by several research groups. Due to their superior geometric shape, calixarenes can accommodate drug molecules by forming inclusion complexes. Controlled release of anticancer drugs by calixarenes might help in targeted chemotherapy. This review summarizes the anticancer potential of the calixarenes and their drug loading properties. The potential use of calixarenes in chemoradiotherapy is also highlighted in brief.
    Matched MeSH terms: Antineoplastic Agents/administration & dosage
  11. Adlan A, Sen DK, Sivanesaratnam V
    Med J Malaysia, 1981 Sep;36(3):159-65.
    PMID: 7329372
    Matched MeSH terms: Antineoplastic Agents/administration & dosage*
  12. Luong D, Kesharwani P, Deshmukh R, Mohd Amin MCI, Gupta U, Greish K, et al.
    Acta Biomater, 2016 10 01;43:14-29.
    PMID: 27422195 DOI: 10.1016/j.actbio.2016.07.015
    Poly(amidoamine) dendrimers (PAMAM) are well-defined, highly branched, nanoscale macromolecules with numerous active amine groups on the surface. PAMAM dendrimer can enhance the solubility of hydrophobic drugs, and with numerous reactive groups on the surface PAMAM dendrimer can be engineered with various functional groups for specific targeting ability. However, in physiological conditions, these amine groups are toxic to cells and limit the application of PAMAM. In the recent years, polyethylene glycol (PEG) conjugation has been the most widely used approach to reduce the toxicity of the active group on dendrimer surface. PEG molecules are known to be inert, non-immunogenic, and non-antigenic with a significant water solubility. PEGylated PAMAM-mediated delivery could not only overcome the limitations of dendrimer such as drug leakage, immunogenicity, hemolytic toxicity, systemic cytotoxicity but they also have the ability to enhance the solubilization of hydrophobic drugs and facilitates the potential for DNA transfection, siRNA delivery and tumor targeting. This review focuses on the recent developments on the application and influence of PEGylation on various biopharmaceutical properties of PAMAM dendrimers.

    STATEMENT OF SIGNIFICANCE: It is well established that dendrimers have demonstrated promising potentials for drug delivery. However, the inherent toxicity poses challenges for its clinical translation. In this regard, PEGylation has helped mitigate some of the toxicity concerns of dendrimers and have paved the way forward for testing its translational potentials. The review is a collection of articles demonstrating the utility of PEGylation of the most studied PAMAM dendrimers. To our knowledge, this is a first such attempt to draw reader's attention, specifically, towards PEGylated PAMAM dendrimers.

    Matched MeSH terms: Antineoplastic Agents/administration & dosage*
  13. Tan KX, Danquah MK, Sidhu A, Ongkudon CM, Lau SY
    Eur J Pharm Sci, 2017 Jan 01;96:8-19.
    PMID: 27593990 DOI: 10.1016/j.ejps.2016.08.061
    Cancer is a leading cause of global mortality. Whilst anticancer awareness programs have increased significantly over the years, scientific research into the development of efficient and specific drugs to target cancerous cells for enhanced therapeutic effects has not received much clinical success. Chemotherapeutic agents are incapable of acting specifically on cancerous cells, thus causing low therapeutic effects accompanied by toxicity to surrounding normal tissues. The search for smart, highly specific and efficient cancer treatments and delivery systems continues to be a significant research endeavor. Targeted cancer therapy is an evolving treatment approach with great promise in enhancing the efficacy of cancer therapies via the delivery of therapeutic agents specifically to and into desired tumor cells using viral or non-viral targeting elements. Viral oncotherapy is an advanced cancer therapy based on the use of oncolytic viruses (OV) as elements to specifically target, replicate and kill malignant cancer cells selectively without affecting surrounding healthy cells. Aptamers, on the other hand, are non-viral targeting elements that are single-stranded nucleic acids with high specificity, selectivity and binding affinity towards their cognate targets. Aptamers have emerged as a new class of bioaffinity targeting elements can be generated and molecularly engineered to selectively bind to diverse targets including proteins, cells and tissues. This article discusses, comparatively, the potentials and impacts of both viral and aptamer-mediated targeted cancer therapies in advancing conventional drug delivery systems through enhanced target specificity, therapeutic payload, bioavailability of the therapeutic agents at the target sites whilst minimizing systemic cytotoxicity. This article emphasizes on effective site-directed targeting mechanisms and efficacy issues that impact on clinical applications.
    Matched MeSH terms: Antineoplastic Agents/administration & dosage
  14. Rengarajan T, Yaacob NS
    Eur J Pharmacol, 2016 Oct 15;789:8-16.
    PMID: 27377217 DOI: 10.1016/j.ejphar.2016.07.001
    Epidemiological studies show that consumption of diets rich in fruits and vegetables is associated with lower risks of cancer. This evidence has kindled interest into research on bioactive food components and has till date resulted in the identification of many compounds with cancer preventive and therapeutic potential. Among such compounds is fisetin (3,7,3,4-tetrahydroxyflavone), a flavonol that is commonly found in many fruits and vegetables such as apples, persimmons, grapes, kiwis, strawberries, onions and cucumbers. Fisetin has been shown to inhibit or retard the growth of various cancer cells in culture and implanted tumors in vivo. Fisetin targets many components of intracellular signaling pathways including regulators of cell survival and apoptosis, tumor angiogenic and metastatic switches by modulating a distinct set of upstream kinases, transcription factors and their regulators. Current evidence supports the idea that fisetin is a promising agent for cancer treatment. This review summarizes reported anticancer effects of fisetin, and re-emphasizes its potential therapeutic role in the treatment of cancer.
    Matched MeSH terms: Antineoplastic Agents/administration & dosage
  15. Fatokun O, Olawepo MN
    Int J Clin Pharm, 2016 Oct;38(5):1075-9.
    PMID: 27586371 DOI: 10.1007/s11096-016-0372-8
    Background Drugs listed on formularies are often subjected to a variety of utilization restriction measures. However, the degree of restriction is influenced by multiple factors, including the characteristics and attributes of the listed drugs. Objective To identify the factors that are associated with the levels of prescribing restriction on oncology formulary drugs in Malaysia. Setting Oncology formulary in Malaysia. Method The Malaysia Drug Code assigned to each of the drug products on the Malaysia Ministry of Health (MOH) drug formulary was used to identify oncology drugs belonging to WHO ATC class L (antineoplastic and immunomodulating agents). Main outcome measures Categories of prescribing restrictions, therapeutic class, drug type, administration mode, number of sources and the post-approval use period. Results Oncology drugs having a shorter post-approval use period (p 
    Matched MeSH terms: Antineoplastic Agents/administration & dosage
  16. Petersen AB, Andersen NS, Konotop G, Hanafiah NH, Raab MS, Krämer A, et al.
    Eur J Med Chem, 2017 Apr 21;130:240-247.
    PMID: 28258034 DOI: 10.1016/j.ejmech.2017.02.055
    Griseofulvin (1) is an important antifungal agent that has recently received attention due to its antiproliferative activity in mammalian cancer cells. Comprehensive SAR studies have led to the identification of 2'-benzyloxy griseofulvin 2, a more potent analogue with low micromolar anticancer potency in vitro. Analogue 2 was also shown to retard tumor growth through inhibition of centrosomal clustering in murine xenograft models of colon cancer and multiple myeloma. However, similar to griseofulvin, compound 2 exhibited poor metabolic stability and aqueous solubility. In order to improve the poor pharmacokinetic properties, 11 griseofulvin analogues were synthesized and evaluated for biological activity and physiological stabilities including SGF, plasma, and metabolic stability. Finally, the most promising compounds were investigated in respect to thermodynamic solubility and formulation studies. The 2'-benzylamine analogue 10 proved to be the most promising compound with low μM in vitro anticancer potency, a 200-fold increase in PBS solubility over compound 2, and with improved metabolic stability. Furthermore, this analogue proved compatible with formulations suitable for both oral and intravenous administration. Finally, 2'-benzylamine analogue 10 was confirmed to induce G2/M cell cycle arrest in vitro.
    Matched MeSH terms: Antineoplastic Agents/administration & dosage
  17. Ghanghoria R, Kesharwani P, Tekade RK, Jain NK
    J Control Release, 2018 01 10;269:277-301.
    PMID: 27840168 DOI: 10.1016/j.jconrel.2016.11.002
    Cancer is a prime healthcare problem that is significantly responsible for universal mortality. Despite distinguished advancements in medical field, chemotherapy is still the mainstay for the treatment of cancers. During chemotherapy, approximately 90% of the administered dose goes to normal tissues, with mere 2-5% precisely reaching the cancerous tissues. Subsequently, the resultant side effects and associated complications lead to dose reduction or even discontinuance of the therapy. Tumor directed therapy therefore, represents a fascinating approach to augment the therapeutic potential of anticancer bioactives as well as overcomes its side effects. The selective overexpression of LHRH receptors on human tumors compared to normal tissues makes them a suitable marker for diagnostics, molecular probes and targeted therapeutics. These understanding enabled the rational to conjugate LHRH with various cytotoxic drugs (doxorubicin, DOX; camptothecin etc.), cytotoxic genes [small interfering RNA (siRNA), micro RNA (miRNA)], as well as therapeutic nanocarriers (nanoparticles, liposomes or dendrimers) to facilitate their tumor specific delivery. LHRH conjugation enhances their delivery via LHRH receptor mediated endocytosis. Numerous cytotoxic analogs of LHRH were developed over the past two decades to target various types of cancers. The potency of LHRH compound were reported to be as high as 5,00-10,00 folds compared to parent molecules. The objective of this review article is to discuss reports on various LHRH analogs with special emphasis on their prospective application in the medical field. The article also focuses on the attributes that must be taken into account while designing a LHRH therapeutics with special account to the biochemistry and applications of these conjugates. The record on various cytotoxic analogs of LHRH are also discussed. It is anticipated that the knowledge of therapeutic and toxicological aspects of LHRH compounds will facilitate the development of a more systematic approach to the targeted delivery of cytotoxic agents using peptides.
    Matched MeSH terms: Antineoplastic Agents/administration & dosage*
  18. Arbain NH, Salim N, Masoumi HRF, Wong TW, Basri M, Abdul Rahman MB
    Drug Deliv Transl Res, 2019 04;9(2):497-507.
    PMID: 29541999 DOI: 10.1007/s13346-018-0509-5
    Bioavailability of quercetin, a flavonoid potentially known to combat cancer, is challenging due to hydrophobic nature. Oil-in-water (O/W) nanoemulsion system could be used as nanocarrier for quercertin to be delivered to lung via pulmonary delivery. The novelty of this nanoformulation was introduced by using palm oil ester/ricinoleic acid as oil phase which formed spherical shape nanoemulsion as measured by transmission electron microscopy and Zetasizer analyses. High energy emulsification method and D-optimal mixture design were used to optimize the composition towards the volume median diameter. The droplet size, polydispersity index, and zeta potential of the optimized formulation were 131.4 nm, 0.257, and 51.1 mV, respectively. The formulation exhibited high drug entrapment efficiency and good stability against phase separation and storage at temperature 4 °C for 3 months. It was discovered that the system had an acceptable median mass aerodynamic diameter (3.09 ± 0.05 μm) and geometric standard deviation (1.77 ± 0.03) with high fine particle fraction (90.52 ± 0.10%), percent dispersed (83.12 ± 1.29%), and percent inhaled (81.26 ± 1.28%) for deposition in deep lung. The in vitro release study demonstrated that the sustained release pattern of quercetin from naneomulsion formulation up to 48 h of about 26.75% release and it was in adherence to Korsmeyer's Peppas mechanism. The cytotoxicity study demonstrated that the optimized nanoemulsion can potentially induce cyctotoxicity towards A549 lung cancer cells without affecting the normal cells. These results of the study suggest that nanoemulsion is a potential carrier system for pulmonary delivery of molecules with low water solubility like quercetin.
    Matched MeSH terms: Antineoplastic Agents/administration & dosage*
  19. Chellappan DK, Ng ZY, Wong JY, Hsu A, Wark P, Hansbro N, et al.
    Future Med Chem, 2018 04 01;10(8):839-844.
    PMID: 29620416 DOI: 10.4155/fmc-2017-0245
    Several vesicular systems loaded with curcumin have found their way in the therapeutic applications of several diseases, primarily acting through their immunological pathways. Such systems use particles at a nanoscale range, bringing about their intended use through a range of complex mechanisms. Apart from delivering drug substances into target tissues, these vesicular systems also effectively overcome problems like insolubility and unequal drug distribution. Several mechanisms are explored lately by different workers, and interest over vesicular curcumin has been renewed in the past decade. This commentary discusses several immunological targets in which curcumin is employed in a vesicular form.
    Matched MeSH terms: Antineoplastic Agents/administration & dosage*
  20. Shindi O, Kanesan J, Kendall G, Ramanathan A
    Comput Methods Programs Biomed, 2020 Jun;189:105327.
    PMID: 31978808 DOI: 10.1016/j.cmpb.2020.105327
    BACKGROUND AND OBJECTIVES: In cancer therapy optimization, an optimal amount of drug is determined to not only reduce the tumor size but also to maintain the level of chemo toxicity in the patient's body. The increase in the number of objectives and constraints further burdens the optimization problem. The objective of the present work is to solve a Constrained Multi- Objective Optimization Problem (CMOOP) of the Cancer-Chemotherapy. This optimization results in optimal drug schedule through the minimization of the tumor size and the drug concentration by ensuring the patient's health level during dosing within an acceptable level.

    METHODS: This paper presents two hybrid methodologies that combines optimal control theory with multi-objective swarm and evolutionary algorithms and compares the performance of these methodologies with multi-objective swarm intelligence algorithms such as MOEAD, MODE, MOPSO and M-MOPSO. The hybrid and conventional methodologies are compared by addressing CMOOP.

    RESULTS: The minimized tumor and drug concentration results obtained by the hybrid methodologies demonstrate that they are not only superior to pure swarm intelligence or evolutionary algorithm methodologies but also consumes far less computational time. Further, Second Order Sufficient Condition (SSC) is also used to verify and validate the optimality condition of the constrained multi-objective problem.

    CONCLUSION: The proposed methodologies reduce chemo-medicine administration while maintaining effective tumor killing. This will be helpful for oncologist to discover and find the optimum dose schedule of the chemotherapy that reduces the tumor cells while maintaining the patients' health at a safe level.

    Matched MeSH terms: Antineoplastic Agents/administration & dosage*
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links