Displaying all 3 publications

  1. Kee YY, Tan SS, Yong TK, Nee CH, Yap SS, Tou TY, et al.
    Nanotechnology, 2012 Jan 20;23(2):025706.
    PMID: 22166812 DOI: 10.1088/0957-4484/23/2/025706
    Low-temperature growth of indium tin oxide (ITO) nanowires (NWs) was obtained on catalyst-free amorphous glass substrates at 250 °C by Nd:YAG pulsed-laser deposition. These ITO NWs have branching morphology as grown in Ar ambient. As suggested by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM), our ITO NWs have the tendency to grow vertically outward from the substrate surface, with the (400) plane parallel to the longitudinal axis of the nanowires. These NWs are low in electrical resistivity (1.6×10⁻⁴ Ω cm) and high in visible transmittance (~90–96%), and were tested as the electrode for organic light emitting devices (OLEDs). An enhanced current density of ~30 mA cm⁻² was detected at bias voltages of ~19–21 V with uniform and bright emission. We found that the Hall mobility of these NWs is 2.2–2.7 times higher than that of ITO film, which can be explained by the reduction of Coulomb scattering loss. These results suggested that ITO nanowires are promising for applications in optoelectronic devices including OLED, touch screen displays, and photovoltaic solar cells.
    Matched MeSH terms: Nanowires/ultrastructure
  2. M Nuzaihan MN, Hashim U, Md Arshad MK, Rahim Ruslinda A, Rahman SF, Fathil MF, et al.
    PLoS One, 2016;11(3):e0152318.
    PMID: 27022732 DOI: 10.1371/journal.pone.0152318
    A top-down nanofabrication approach is used to develop silicon nanowires from silicon-on-insulator (SOI) wafers and involves direct-write electron beam lithography (EBL), inductively coupled plasma-reactive ion etching (ICP-RIE) and a size reduction process. To achieve nanometer scale size, the crucial factors contributing to the EBL and size reduction processes are highlighted. The resulting silicon nanowires, which are 20 nm in width and 30 nm in height (with a triangular shape) and have a straight structure over the length of 400 μm, are fabricated precisely at the designed location on the device. The device is applied in biomolecule detection based on the changes in drain current (Ids), electrical resistance and conductance of the silicon nanowires upon hybridization to complementary target deoxyribonucleic acid (DNA). In this context, the scaled-down device exhibited superior performances in terms of good specificity and high sensitivity, with a limit of detection (LOD) of 10 fM, enables for efficient label-free, direct and higher-accuracy DNA molecules detection. Thus, this silicon nanowire can be used as an improved transducer and serves as novel biosensor for future biomedical diagnostic applications.
    Matched MeSH terms: Nanowires/ultrastructure
  3. Thiha A, Ibrahim F, Muniandy S, Dinshaw IJ, Teh SJ, Thong KL, et al.
    Biosens Bioelectron, 2018 Jun 01;107:145-152.
    PMID: 29455024 DOI: 10.1016/j.bios.2018.02.024
    Nanowire sensors offer great potential as highly sensitive electrochemical and electronic biosensors because of their small size, high aspect ratios, and electronic properties. Nevertheless, the available methods to fabricate carbon nanowires in a controlled manner remain limited to expensive techniques. This paper presents a simple fabrication technique for sub-100 nm suspended carbon nanowire sensors by integrating electrospinning and photolithography techniques. Carbon Microelectromechanical Systems (C-MEMS) fabrication techniques allow fabrication of high aspect ratio carbon structures by patterning photoresist polymers into desired shapes and subsequent carbonization of resultant structures by pyrolysis. In our sensor platform, suspended nanowires were deposited by electrospinning while photolithography was used to fabricate support structures. We have achieved suspended carbon nanowires with sub-100 nm diameters in this study. The sensor platform was then integrated with a microfluidic chip to form a lab-on-chip device for label-free chemiresistive biosensing. We have investigated this nanoelectronics label-free biosensor's performance towards bacterial sensing by functionalization with Salmonella-specific aptamer probes. The device was tested with varying concentrations of Salmonella Typhimurium to evaluate sensitivity and various other bacteria to investigate specificity. The results showed that the sensor is highly specific and sensitive in detection of Salmonella with a detection limit of 10 CFU mL-1. Moreover, this proposed chemiresistive assay has a reduced turnaround time of 5 min and sample volume requirement of 5 µL which are much less than reported in the literature.
    Matched MeSH terms: Nanowires/ultrastructure
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links