Displaying publications 1 - 20 of 58 in total

Abstract:
Sort:
  1. Abolnik C, Mubamba C, Wandrag DBR, Horner R, Gummow B, Dautu G, et al.
    Transbound Emerg Dis, 2018 Apr;65(2):e393-e403.
    PMID: 29178267 DOI: 10.1111/tbed.12771
    It is widely accepted that Newcastle disease is endemic in most African countries, but little attention has been afforded to establishing the sources and frequency of the introductions of exotic strains. Newcastle disease outbreaks have a high cost in Africa, particularly on rural livelihoods. Genotype VIIh emerged in South-East Asia and has since caused serious outbreaks in poultry in Malaysia, Indonesia, southern China, Vietnam and Cambodia. Genotype VIIh reached the African continent in 2011, with the first outbreaks reported in Mozambique. Here, we used a combination of phylogenetic evidence, molecular dating and epidemiological reports to trace the origins and spread of subgenotype VIIh Newcastle disease in southern Africa. We determined that the infection spread northwards through Mozambique, and then into the poultry of the north-eastern provinces of Zimbabwe. From Mozambique, it also reached neighbouring Malawi and Zambia. In Zimbabwe, the disease spread southward towards South Africa and Botswana, causing outbreaks in backyard chickens in early-to-mid 2013. In August 2013, the disease entered South Africa's large commercial industry, and the entire country was infected within a year, likely through fomites and the movements of cull chickens. Illegal poultry trading or infected waste from ships and not wild migratory birds was the likely source of the introduction to Mozambique in 2011.
    Matched MeSH terms: Poultry Diseases/virology
  2. Aljumaili OA, Bello MB, Yeap SK, Omar AR, Ideris A
    Onderstepoort J Vet Res, 2020 Sep 28;87(1):e1-e7.
    PMID: 33054260 DOI: 10.4102/ojvr.v87i1.1865
    Despite the availability of Newcastle disease (ND) vaccines for more than six decades, disease outbreaks continue to occur with huge economic consequences to the global poultry industry. The aim of this study is to develop a safe and effective inactivated vaccine based on a recently isolated Newcastle disease virus (NDV) strain IBS025/13 and evaluate its protective efficacy in chicken following challenge with a highly virulent genotype VII isolate. Firstly, high titre of IBS025/13 was exposed to various concentrations of binary ethylenimine (BEI) to determine the optimal conditions for complete inactivation of the virus. The inactivated virus was then prepared in form of a stable water-in-oil emulsion of black seed oil (BSO) or Freund's incomplete adjuvant (FIA) and used as vaccines in specific pathogen-free chicken. Efficacy of various vaccine preparations was also evaluated based on the ability of the vaccine to protect against clinical disease, mortality and virus shedding following challenge with highly virulent genotype\VII NDV isolate. The results indicate that exposure of NDV IBS025/13 to 10 mM of BEI for 21 h at 37 °C could completely inactivate the virus without tempering with the structural integrity of the viral hemagglutin-neuraminidase protein. More so, the inactivated vaccines adjuvanted with either BSO- or FIA-induced high hemagglutination inhibition antibody titre that protected the vaccinated birds against clinical disease and in some cases virus shedding, especially when used together with live attenuated vaccines. Thus, genotype VII-based NDV-inactivated vaccines formulated in BSO could substantially improve poultry disease control particularly when combined with live attenuated vaccines.
    Matched MeSH terms: Poultry Diseases/virology
  3. Balasubramaniam VR, Hassan SS, Omar AR, Mohamed M, Noor SM, Mohamed R, et al.
    Virol J, 2011;8:196.
    PMID: 21529348 DOI: 10.1186/1743-422X-8-196
    Highly pathogenic Avian Influenza (HPAI) virus is able to infect many hosts and the virus replicates in high levels in the respiratory tract inducing severe lung lesions. The pathogenesis of the disease is actually the outcome of the infection as determined by complex host-virus interactions involving the functional kinetics of large numbers of participating genes. Understanding the genes and proteins involved in host cellular responses are therefore, critical for the elucidation of the mechanisms of infection.
    Matched MeSH terms: Poultry Diseases/virology
  4. Bande F, Arshad SS, Omar AR, Hair-Bejo M, Mahmuda A, Nair V
    Anim Health Res Rev, 2017 Jun;18(1):70-83.
    PMID: 28776490 DOI: 10.1017/S1466252317000044
    The poultry industry faces challenge amidst global food security crisis. Infectious bronchitis is one of the most important viral infections that cause huge economic loss to the poultry industry worldwide. The causative agent, infectious bronchitis virus (IBV) is an RNA virus with great ability for mutation and recombination; thus, capable of generating new virus strains that are difficult to control. There are many IBV strains found worldwide, including the Massachusetts, 4/91, D274, and QX-like strains that can be grouped under the classic or variant serotypes. Currently, information on the epidemiology, strain diversity, and global distribution of IBV has not been comprehensively reported. This review is an update of current knowledge on the distribution, genetic relationship, and diversity of the IBV strains found worldwide.
    Matched MeSH terms: Poultry Diseases/virology*
  5. Berhanu A, Ideris A, Omar AR, Bejo MH
    Virol J, 2010;7:183.
    PMID: 20691110 DOI: 10.1186/1743-422X-7-183
    Newcastle disease (ND), caused by Newcastle disease virus (NDV), is a highly contagious disease of birds and has been one of the major causes of economic losses in the poultry industry. Despite routine vaccination programs, sporadic cases have occasionally occurred in the country and remain a constant threat to commercial poultry. Hence, the present study was aimed to characterize NDV isolates obtained from clinical cases in various locations of Malaysia between 2004 and 2007 based on sequence and phylogenetic analysis of partial F gene and C-terminus extension length of HN gene.
    Matched MeSH terms: Poultry Diseases/virology*
  6. Boo SY, Tan SW, Alitheen NB, Ho CL, Omar AR, Yeap SK
    Sci Rep, 2020 10 27;10(1):18348.
    PMID: 33110122 DOI: 10.1038/s41598-020-75340-x
    The infectious bursal disease (IBD) is an acute immunosuppressive viral disease that significantly affects the economics of the poultry industry. The IBD virus (IBDV) was known to infect B lymphocytes and activate macrophage and T lymphocytes, but there are limited studies on the impact of IBDV infection on chicken intraepithelial lymphocyte natural killer (IEL-NK) cells. This study employed an mRNA sequencing approach to investigate the early regulation of gene expression patterns in chicken IEL-NK cells after infection with very virulent IBDV strain UPM0081. A total of 12,141 genes were expressed in uninfected chicken IEL-NK cells, and most of the genes with high expression were involved in the metabolic pathway, whereas most of the low expressed genes were involved in the cytokine-cytokine receptor pathway. A total of 1,266 genes were differentially expressed (DE) at 3 day-post-infection (dpi), and these DE genes were involved in inflammation, antiviral response and interferon stimulation. The innate immune response was activated as several genes involved in inflammation, antiviral response and recruitment of NK cells to the infected area were up-regulated. This is the first study to examine the whole transcriptome profile of chicken NK cells towards IBDV infection and provides better insight into the early immune response of chicken NK cells.
    Matched MeSH terms: Poultry Diseases/virology*
  7. Boo SY, Tan SW, Alitheen NB, Ho CL, Omar AR, Yeap SK
    Sci Rep, 2020 05 22;10(1):8561.
    PMID: 32444639 DOI: 10.1038/s41598-020-65474-3
    Due to the limitations in the range of antibodies recognising avian viruses, quantitative real-time PCR (RT-qPCR) is still the most widely used method to evaluate the expression of immunologically related genes in avian viruses. The objective of this study was to identify suitable reference genes for mRNA expression analysis in chicken intraepithelial lymphocyte natural killer (IEL-NK) cells after infection with very-virulent infectious bursal disease virus (vvIBDV). Fifteen potential reference genes were selected based on the references available. The coefficient of variation percentage (CV%) and average count of these 15 genes were determined by NanoString technology for control and infected samples. The M and V values for shortlisted reference genes (ACTB, GAPDH, HMBS, HPRT1, SDHA, TUBB1 and YWHAZ) were calculated using geNorm and NormFinder. GAPDH, YWHAZ and HMBS were the most stably expressed genes. The expression levels of three innate immune response related target genes, CASP8, IL22 and TLR3, agreed in the NanoString and RNA sequencing (RNA-Seq) results using one or two reference genes for normalisation (not HMBS). In conclusion, GAPDH and YWHAZ could be used as reference genes for the normalisation of chicken IEL-NK cell gene responses to infection with vvIBDV.
    Matched MeSH terms: Poultry Diseases/virology
  8. Choi KS, Kye SJ, Kim JY, To TL, Nguyen DT, Lee YJ, et al.
    Trop Anim Health Prod, 2014 Jan;46(1):271-7.
    PMID: 24061688 DOI: 10.1007/s11250-013-0475-3
    Newcastle disease virus (NDV) causes significant economic losses to the poultry industry in Southeast Asia. In the present study, 12 field isolates of NDV were recovered from dead village chickens in Vietnam between 2007 and 2012, and were characterized. All the field isolates were classified as velogenic. Based on the sequence analysis of the F variable region, two distinct genetic groups (Vietnam genetic groups G1 and G2) were recognized. Phylogenetic analysis revealed that all the 12 field isolates fell into the class II genotype VII cluster. Ten of the field isolates, classified as Vietnam genetic group G1, were closely related to VIIh viruses that had been isolated from Indonesia, Malaysia, and Cambodia since the mid-2000s, while the other two field isolates, of Vietnam genetic group G2, clustered with VIId viruses, which were predominantly circulating in China and Far East Asia. Our results indicate that genotype VII viruses, especially VIIh viruses, are predominantly responsible for the recent epizootic of the disease in Vietnam.
    Matched MeSH terms: Poultry Diseases/virology
  9. Choi KS, Kye SJ, Kim JY, Damasco VR, Sorn S, Lee YJ, et al.
    Virus Genes, 2013 Oct;47(2):244-9.
    PMID: 23764918 DOI: 10.1007/s11262-013-0930-2
    Three isolates of Newcastle disease virus (NDV) were isolated from tracheal samples of dead village chickens in two provinces (Phnom Penh and Kampong Cham) in Cambodia during 2011-2012. All of these Cambodian NDV isolates were categorized as velogenic pathotype, based on in vivo pathogenicity tests and F cleavage site motif sequence ((112)RRRKRF(117)). The phylogenetic analysis and the evolutionary distances based on the sequences of the F gene revealed that all the three field isolates of NDV from Cambodia form a distinct cluster (VIIh) together with three Indonesian strains and were assigned to the genotype VII within the class II. Further phylogenetic analysis based on the hyper-variable region of the F gene revealed that some of NDV strains from Malaysia since the mid-2000s were also classified into the VIIh virus. This indicates that the VIIh NDVs are spreading through Southeast Asia. The present investigation, therefore, emphasizes the importance of further surveillance of NDV in neighboring countries as well as throughout Southeast Asia to contain further spreading of these VIIh viruses.
    Matched MeSH terms: Poultry Diseases/virology
  10. Craig MI, Rimondi A, Delamer M, Sansalone P, König G, Vagnozzi A, et al.
    Avian Dis, 2009 Sep;53(3):331-5.
    PMID: 19848068
    Chicken infectious anemia virus (CAV) is a worldwide-distributed infectious agent that affects commercial poultry. Although this agent was first detected in Argentina in 1994, no further studies on CAV in this country were reported after that. The recent increased occurrence of clinical cases of immunosuppression that could be caused by CAV has prompted this study. Our results confirmed that CAV is still circulating in commercial flocks in Argentina. Phylogenetic analysis focusing on the VP1 nucleotide sequence showed that all Argentinean isolates grouped together in a cluster, sharing a high similarity (> 97%) with genotype B reference strains. However, Argentinean isolates were distantly related to other strains commonly used for vaccination in this country, such as Del-Ros and Cux-1. Sequence analysis of predicted VP1 peptides showed that most of the Argentinean isolates have a glutamine residue at positions 139 and 144, suggesting that these isolates might have a reduced spread in cell culture compared with Cux-1. In addition, a particular amino acid substitution at position 290 is present in all studied Argentinean isolates, as well as in several VP1 sequences from Malaysia, Australia, and Japan isolates. Our results indicate that it is possible to typify CAV strains by comparison of VPI nucleotide sequences alone because the same tree topology was obtained when using the whole genome sequence. The molecular analysis of native strains sheds light into the epidemiology of CAV in Argentinean flocks. In addition, this analysis could be considered in future control strategies focused not only on breeders but on broilers and layer flocks.
    Matched MeSH terms: Poultry Diseases/virology*
  11. Fadhilah AS, Kai TH, Lokman HI, Yasmin NAR, Hafandi A, Hasliza AH, et al.
    Poult Sci, 2020 Jun;99(6):2937-2943.
    PMID: 32475428 DOI: 10.1016/j.psj.2020.01.026
    Infectious bronchitis virus (IBV) infection is highly infectious respiratory disease in poultry industry with significant economic importance. The prevalence of IBV in quail industry in Malaysia was not well documented; therefore, its actual role in the epidemiology of the disease is relatively unknown. This study was to determine the susceptibility of Japanese quail, as one of the species in commercial poultry industry, toward IBV. In addition, it will also give a potential impact on the overall health management in the quail industry even though it had been established that quail are resistant to diseases affecting poultry. Moreover, to the best of our knowledge, it is the first experimental study on IBV inoculation in quail. In this experimental study, 20 quails were divided into 4 groups (n = 5 for group A, B, and C, n = 5 for control group). The quails in group A, B, and C were infected via intraocular and intranasal routes with 0.2 mL of 10 × 5 EID50 of the virus. Clinical signs, gross lesions, positive detection of virus, and trachea histopathological scoring were used to assess the susceptibility of these Japanese quails. The results have indicated mild ruffled feathers and watery feces in these inoculated birds. Trachea, lung, and kidney were subjected to one-step reverse transcription polymerase chain reaction for virus detection. The virus was found from trachea and lung samples, whereas it was absent from all kidney samples. Only 3 quails were found with gross lesions. There was a significant difference of tracheal lesion by 0.009 ± 0.845 (P < 0.05) within the treatment groups. In summary, Japanese quails might be susceptible to IBV.
    Matched MeSH terms: Poultry Diseases/virology
  12. Farhanah MI, Yasmin AR, Khanh NP, Yeap SK, Hair-Bejo M, Omar AR
    Arch Virol, 2018 Aug;163(8):2085-2097.
    PMID: 29626271 DOI: 10.1007/s00705-018-3841-7
    Very virulent infectious bursal disease virus (vvIBDV) targets B lymphocytes in the bursa of Fabricius (BF), causing immunosuppression and increased mortality rates in young birds. There have been few studies on the host immune response following vvIBDV infection at different inoculum doses in chickens with different genetic backgrounds. In this study, we characterized the immune responses of specific-pathogen-free (SPF) chickens and Malaysian red jungle fowl following infection with vvIBDV strain UPM0081 at 103.8 and 106.8 times the 50% embryo infectious dose (EID50). The viral burden, histopathological changes, immune cell populations, and expression of immune-related genes were measured and compared between infected and uninfected bursa at specific intervals. The populations of KUL1+, CD3+CD4+ and CD3+CD8+ cells were significantly increased in both types of chickens at 3 dpi, and there was significant early depletion of IgM+ B cells at 1 dpi in the red jungle fowl. vvIBDV infection also induced differential expression of genes that are involved in Th1 and pro-inflammatory responses, with groups receiving the higher dose (106.8 EID50) showing earlier expression of IFNG, IL12B, IL15, IL6, CXCLi2, IL28B, and TLR3 at 1 dpi. Although both chicken types showed equal susceptibility to infection, the red jungle fowl were clinically healthier than the SPF chickens despite showing more depletion of IgM+ B cells and failure to induce IFNB activation. In conclusion, high-dose vvIBDV infection caused an intense early host immune response in the infected bursa, with depletion of IgM+ B cells, bursal lesions, and cytokine expression as a response to mitigate the severity of the infection.
    Matched MeSH terms: Poultry Diseases/virology
  13. Farhanah MI, Yasmin AR, Mat Isa N, Hair-Bejo M, Ideris A, Powers C, et al.
    J Gen Virol, 2018 Jan;99(1):21-35.
    PMID: 29058656 DOI: 10.1099/jgv.0.000956
    Infectious bursal disease is a highly contagious disease in the poultry industry and causes immunosuppression in chickens. Genome-wide regulations of immune response genes of inbred chickens with different genetic backgrounds, following very virulent infectious bursal disease virus (vvIBDV) infection are poorly characterized. Therefore, this study aims to analyse the bursal tissue transcriptome of six inbred chicken lines 6, 7, 15, N, O and P following infection with vvIBDV strain UK661 using strand-specific next-generation sequencing, by highlighting important genes and pathways involved in the infected chicken during peak infection at 3 days post-infection. All infected chickens succumbed to the infection without major variations among the different lines. However, based on the viral loads and bursal lesion scoring, lines P and 6 can be considered as the most susceptible lines, while lines 15 and N were regarded as the least affected lines. Transcriptome profiling of the bursa identified 4588 genes to be differentially expressed, with 2985 upregulated and 1642 downregulated genes, in which these genes were commonly or uniquely detected in all or several infected lines. Genes that were upregulated are primarily pro-inflammatory cytokines, chemokines and IFN-related. Various genes that are associated with B-cell functions and genes related to apoptosis were downregulated, together with the genes involved in p53 signalling. In conclusion, bursal transcriptome profiles of different inbred lines showed differential expressions of pro-inflammatory cytokines and chemokines, Th1 cytokines, JAK-STAT signalling genes, MAPK signalling genes, and their related pathways following vvIBDV infection.
    Matched MeSH terms: Poultry Diseases/virology
  14. Gimeno IM, Cortes AL, Faiz N, Villalobos T, Badillo H, Barbosa T
    Avian Dis, 2016 09;60(3):662-8.
    PMID: 27610727 DOI: 10.1637/11415-040116-Reg.1
    Herpesvirus of turkeys (HVT) has been successfully used as a Marek's disease (MD) vaccine for more than 40 yr. Either alone (broiler chickens) or in combination with vaccines of other serotypes (broilers, broiler breeders, and layers), HVT is used worldwide. In recent years, several vector vaccines based on HVT (rHVT) have been developed. At present, there are both conventional HVT and rHVTs in the market, and it is unknown if all of them confer the same level of protection against MD. The objective of this study was to further characterize the protection conferred by two conventional HVTs (HVT-A and HVT-B) and three recombinant HVTs (rHVT-B, rHVT-C, and rHVT-D) against MD in broiler chickens. In a first study we evaluated the efficacy of two conventional HVTs (HVT-A and HVT-B) administered at different doses (475, 1500, and 4000 PFU) at day of age on the ability to protect against an early challenge with very virulent plus strain 645. In a second experiment we evaluated the protection ability of several HVTs (both conventional and recombinant) when administered in ovo at a dose of 1500 PFU using the same challenge model. Our results show that each HVT product is unique, regardless of being conventional or recombinant, in their ability to protect against MD and might require different PFUs to achieve its maximum efficacy. In Experiment 1, HVT-A at 4000 PFU conferred higher protection (protection index [PI] = 63) than any of the other vaccine protocols (PI ranging from 36 to 47). In Experiment 2, significant differences were found among vaccine protocols with PI varying from 66 (HVT-A) to 15 (rHVT-D). Our results show that each HVT is unique and age at vaccination and vaccine dose greatly affected vaccine efficacy. Furthermore, they highlight the need of following manufacturer's recommendations.
    Matched MeSH terms: Poultry Diseases/virology
  15. Hailemariam Z, Omar AR, Hair-Bejo M, Giap TC
    Virol J, 2008;5:128.
    PMID: 18954433 DOI: 10.1186/1743-422X-5-128
    Chicken anemia virus (CAV) is the causative agent of chicken infectious anemia (CIA). Study on the type of CAV isolates present and their genetic diversity, transmission to their progeny and level of protection afforded in the breeder farms is lacking in Malaysia. Hence, the present study was aimed to detect CAV from commercial broiler breeder farms and characterize CAV positive samples based on sequence and phylogenetic analysis of partial VP1 gene.
    Matched MeSH terms: Poultry Diseases/virology*
  16. Hairul Aini H, Omar AR, Hair-Bejo M, Aini I
    Microbiol Res, 2008;163(5):556-63.
    PMID: 16971101
    The current available molecular method to detect infectious bursal disease virus (IBDV) is by reverse transcriptase-polymerase chain reaction (RT-PCR). However, the conventional PCR is time consuming, prone to error and less sensitive. In this study, the performances of Sybr Green I real-time PCR, enzyme-linked immunosorbent assay (ELISA) and conventional agarose detection methods in detecting specific IBDV PCR products were compared. We found the real-time PCR was at least 10 times more sensitive than ELISA detection method with a detection limit of 0.25pg. The latter was also at least 10 times more sensitive than agarose gel electrophoresis detection method. The developed assay detects both very virulent and vaccine strains of IBDV but not other RNA viruses such as Newcastle disease virus and infectious bronchitis virus. Hence, Sybr Green I-based real-time PCR is a highly sensitive assay for the detection of IBDV.
    Matched MeSH terms: Poultry Diseases/virology*
  17. He C, Ding N, Li J, Li Y
    Wei Sheng Wu Xue Bao, 2002 Aug;42(4):436-41.
    PMID: 12557549
    A Chicken anemia virus has been isolated from a chicken flock in Harbin of China. The genome of the ivrus was cloned through polymerase chain reaction(PCR) and sequence of the genome was analyzed. The cycle genome is made of 2298 base pairs including three overlapping open reading frames(vp1, vp2, vp3) and a regulative region. Comparing sequence of the genome through BLAST in GenBank, this sequence exhibits 96.9% identity with other genome of CA Vs and least. Multiple alignment of this genome of this virus, 26p4, strain isolated in Germany, strain isolated in Malaysia and Cux-1 found that this sequence exhibits 98.2% (42/2298), 98.2% (42/2298), 96.9% (72/2298) and 97.5% (60/2319) identify with them, respectively. A new CAV strain was isolated and it has better identify with CAV isolated in Europe countries than is Asia country Malaysia. Multiple alignment of VP1, VP2, VP3 of 26p4, strain isolated in Germany, strain isolated in Malaysia, Cux-1 and strain isolated in Harbin of China found the VP2 the most conservative.
    Matched MeSH terms: Poultry Diseases/virology*
  18. Homonnay ZG, Kovács EW, Bányai K, Albert M, Fehér E, Mató T, et al.
    Avian Pathol, 2014;43(6):552-60.
    PMID: 25299764 DOI: 10.1080/03079457.2014.973832
    A neurological disease of young Pekin ducks characterized by ataxia, lameness, and paralysis was observed at several duck farms in Malaysia in 2012. Gross pathological lesions were absent or inconsistent in most of the cases, but severe and consistent microscopic lesions were found in the brain and spinal cord, characterized by non-purulent panencephalomyelitis. Several virus isolates were obtained in embryonated duck eggs and in cell cultures (Vero and DF-1) inoculated with the brain homogenates of affected ducks. After exclusion of other viruses, the isolates were identified as a flavivirus by flavivirus-specific reverse transcription-polymerase chain reaction (RT-PCR) assays. Inoculation of 2-week-old Pekin ducks with a flavivirus isolate by the subcutaneous or intramuscular route resulted in typical clinical signs and histological lesions in the brain and spinal cord. The inoculated virus was detected by RT-PCR from organ samples of ducks with clinical signs and histological lesions. With a few days delay, the disease was also observed among co-mingled contact control birds. Phylogenetic analysis of NS5 and E gene sequences proved that the isolates were representatives of a novel phylogenetic group within clade XI (Ntaya virus group) of the Flavivirus genus. This Malaysian Duck Tembusu Virus (DTMUV), named Perak virus, has moderate genomic RNA sequence similarity to a related DTMUV identified in China. In our experiment the Malaysian strain of DTMUV could be transmitted in the absence of mosquito vectors. These findings may have implications for the control and prevention of this emerging group of flaviviruses.
    Matched MeSH terms: Poultry Diseases/virology
  19. Hussein EA, Hair-Bejo M, Liew PS, Adamu L, Omar AR, Arshad SS, et al.
    Microb Pathog, 2019 Apr;129:195-205.
    PMID: 30738178 DOI: 10.1016/j.micpath.2019.01.049
    Infectious bursal disease is one of an OIE list of notifiable diseases. Chicken is the only host that manifests clinical signs and its pathogenicity is correlated with the distribution of antigens in organs. This study was conducted to determine disease pathogenesis and virus tissue tropism by in situ PCR, immunoperoxidase staining (IPS), and HE staining. Twenty four chickens were infected with very virulent Infectious Bursal Disease Virus (vvIBDV). Fifteen chickens were kept as a control group. Infected chickens were sacrificed at hrs 2, 4, 6, 12, days 1, 2, 4, and 6 post-inoculation (pi). While, control chickens were euthanized on days 0, 1, 2, 4, and 6 pi. Different tissues were collected, fixed in 10% buffered formalin, and processed. At hr 2 pi, virus was detected in intestinal, junction of the proventriculus and gizzard, cecal tonsil, liver, kidney, and bursa of Fabricius. At hr 4 pi, virus reached spleen, and at hr 6 pi, it entered thymus. At hr 12 pi, virus concentration increased in positive tissues. The latest invaded tissue was muscle on day 1 pi. Secondary viraemia occurred during 12-24 h pi. In situ PCR was the most sensitive technique to highlight obscure points of infection in this study.
    Matched MeSH terms: Poultry Diseases/virology*
  20. Hussein EA, Hair-Bejo M, Omar AR, Arshad SS, Hani H, Balakrishnan KN, et al.
    Microb Pathog, 2019 Apr;129:213-223.
    PMID: 30771470 DOI: 10.1016/j.micpath.2019.02.017
    Limited deep studies are available in the field of early stages of pathogenesis of Newcastle disease virus (NDV) infection and tissue tropism of NDV. In this study, 24 specific pathogen free (SPF) chickens of white leghorn breed were infected with Newcastle disease (ND) by intranasal administration of 10⁵ 50% EID50/0.1 mL of velogenic NDV (vNDV). A second group of 15 chickens were kept as a control group. Chickens were monitored every day to record clinical signs. Infected chickens were euthanized by cervical dislocation at successive times, namely at hours (hrs) 2, 4, 6, 12, days 1, 2, 4, and 6 post-inoculation (pi). Whereas, control group chickens were euthanized on days 0, 1, 2, 4, and 6 pi. Tissues of brain, trachea, lung, caecal tonsil, liver, kidney, spleen, heart, proventriculus, intestine, and thymus were collected, fixed in 10% buffered formalin, embedded in paraffin, and sectioned. HS staining, immunoperoxidase staining (IPS) and in situ PCR were applied. It was concluded that at hr 2 pi, virus seemed to be inclined to trachea and respiratory tract. Meanwhile, it attacked caecal tonsils, intestine and bursa of Fabricus. While primary viraemia was ongoing, virus created footing in kidney and thymus. At hr 4 pi, proventriculus, liver, and spleen were attacked. However, at hr 6 pi, brain and heart were involved. Secondary viraemia probably started as early as hr 12 pi since all collected tissues were positive. Tissue tropism was determined in trachea, caecal tonsil, liver, bursa of Fabricius, intestine, proventriculus, lung, spleen, thymus, kidney, heart, and brain.
    Matched MeSH terms: Poultry Diseases/virology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links