Displaying all 6 publications

Abstract:
Sort:
  1. Habilla, C., Sim, S.Y., Nor Aziah, Cheng, L.H.
    MyJurnal
    In this study, acid-thinned starch was blended with konjac glucomannan or psyllium husk powder at a concentration of 3% w/w (starch basis). The blends were characterized by pasting analysis and rheological
    properties evaluation. Jelly candy was made from the blends and textural characteristics were studied. Pasting analysis showed that both gums were found to significantly increase some of the pasting parameters, such as peak viscosity, trough, breakdown, final viscosity and setback values. From the frequency sweep, it was found that addition of konjac glucomanan or psyllium husk powder increased the storage modulus (G’) and loss modulus (G’’) values, with psyllium added sample showing more prominent effect than konjac added ones, when compared to the control samples. All samples were found to demonstrate thixotropic flow behaviour. Jelly candy texture profile analysis revealed that konjac glucomannan or psyllium husk powder addition, although decreasing chewability, but rendered the jelly candy less sticky.
    Matched MeSH terms: Psyllium
  2. Haghshenas B, Abdullah N, Nami Y, Radiah D, Rosli R, Yari Khosroushahi A
    J Appl Microbiol, 2015 Apr;118(4):1048-57.
    PMID: 25619628 DOI: 10.1111/jam.12762
    Investigation on the use of herbal-based biopolymers for probiotic-Lactobacillus plantarum 15HN-encapsulation is presented. The objectives are to enhance its oral delivery, colonic release and survival rate of these probiotic cultures in gastrointestinal environment.
    Matched MeSH terms: Psyllium*
  3. Al-Hamadani YA, Yusoff MS, Umar M, Bashir MJ, Adlan MN
    J Hazard Mater, 2011 Jun 15;190(1-3):582-7.
    PMID: 21507572 DOI: 10.1016/j.jhazmat.2011.03.087
    Landfill leachate is a heavily polluted and a likely hazardous liquid that is produced as a result of water infiltration through solid wastes generated industrially and domestically. This study investigates the potential of using psyllium husk as coagulant and coagulant aid for the treatment of landfill leachate. Psyllium husk has been tested as primary coagulant and as coagulant aid with poly-aluminum chloride (PACl) and aluminum sulfate (alum). As primary coagulant, the optimum dosage and pH for PACl were 7.2 and 7.5 g/L, respectively, with removal efficiencies of 55, 80 and 95% for COD, color and TSS, respectively. For alum, the optimum conditions were 11 g/L alum dosage and pH 6.5 with removal efficiencies of 58, 79 and 78% for COD, color and TSS, respectively. The maximum removal efficiencies of COD, color and TSS were 64, 90 and 96%, respectively, when psyllium husk was used as coagulant aid with PACl. Based on the results, psyllium husk was found to be more effective as coagulant aid with PACl in the removal of COD, color and TSS as compared to alum. Zeta potential test was carried out for leachate, PACl, alum and psyllium husk before and after running the jar test to enhance the results of the jar test experiments.
    Matched MeSH terms: Psyllium/chemistry*
  4. Erdogan A, Rao SS, Thiruvaiyaru D, Lee YY, Coss Adame E, Valestin J, et al.
    Aliment Pharmacol Ther, 2016 07;44(1):35-44.
    PMID: 27125883 DOI: 10.1111/apt.13647
    BACKGROUND: Fibre supplements are useful, but whether a plum-derived mixed fibre that contains both soluble and insoluble fibre improves constipation is unknown.

    AIM: To investigate the efficacy and tolerability of mixed soluble/insoluble fibre vs. psyllium in a randomized double-blind controlled trial.

    METHODS: Constipated patients (Rome III) received mixed fibre or psyllium, 5 g b.d., for 4 weeks. Daily symptoms and stool habit were assessed using stool diary. Subjects with ≥1 complete spontaneous bowel movement/week above baseline for ≥2/4 weeks were considered responders. Secondary outcome measures included stool consistency, bowel satisfaction, straining, gas, bloating, taste, dissolvability and quality of life (QoL).

    RESULTS: Seventy-two subjects (mixed fibre = 40; psyllium = 32) were enrolled and two from psyllium group withdrew. The mean complete spontaneous bowel movement/week increased with both mixed fibre (P < 0.0001) and psyllium (P = 0.0002) without group difference. There were 30 (75%) responders with mixed fibre and 24 (75%) with psyllium (P = 0.9). Stool consistency increased (P = 0.04), straining (P = 0.006) and bloating scores decreased (P = 0.02) without group differences. Significantly more patients reported improvement in flatulence (53% vs. 25%, P = 0.01) and felt that mixed fibre dissolved better (P = 0.02) compared to psyllium. QoL improved (P = 0.0125) with both treatments without group differences.

    CONCLUSIONS: Mixed fibre and psyllium were equally efficacious in improving constipation and QoL. Mixed fibre was more effective in relieving flatulence, bloating and dissolved better. Mixed fibre is effective and well tolerated.

    Matched MeSH terms: Psyllium/administration & dosage*
  5. Nami Y, Haghshenas B, Yari Khosroushahi A
    Food Sci Nutr, 2017 05;5(3):554-563.
    PMID: 28572941 DOI: 10.1002/fsn3.430
    Different herbal biopolymers were used to encapsulate Enterococcus durans IW3 to enhance its storage stability in yogurt and subsequently its endurance in gastrointestinal condition. Nine formulations of encapsulation were performed using alginate (ALG), ALG-psyllium (PSY), and ALG-gum Arabic (GA) blends. The encapsulation efficiency of all formulations, tolerance of encapsulated E. durans IW3 against low pH/high bile salt concentration, storage lifetime, and release profile of cells in natural condition of yogurt were evaluated. Result revealed 98.6% encapsulation efficiency and 76% survival rate for all formulation compared with the unencapsulated formulation cells (43%). The ALG-PSY and ALG-GA formulations have slightly higher survival rates at low pH and bile salt condition (i.e., 76-93% and 81-95%, respectively) compared with the ALG formulation. All encapsulated E. durans IW3 was released from the prepared beads of ALG after 90 min, whereas both probiotics encapsulated in ALG-GA and ALG-PSY were released after 60 min. Enterococcus durans IW3 was successfully encapsulated in ALG, ALG-GA, and ALG-PSY beads prepared by extrusion method. ALG-GA and ALG-PSY beads are suitable delivery carriers for the oral administration of bioactive compounds like probiotics. The GA and PSY gels exhibited better potential for encapsulation of probiotic bacteria cells because of the amendment of ALG difficulties and utilization of therapeutic and prebiotic potentials of these herbal biopolymers.
    Matched MeSH terms: Psyllium
  6. Lyn Heng JJ, Teng JH, Saravanan M, Pushpamalar J
    Sci Pharm, 2018 Jun 05;86(2).
    PMID: 29874858 DOI: 10.3390/scipharm86020024
    The purpose behind the work was to fabricate alginate beads with better drug loading and extended drug release. Ispaghula was used to enhance the drug loading while zein was employed to extend the drug release. Ibuprofen was employed as a model drug in this study. Ibuprofen-loaded alginate beads with and without ispaghula were prepared using vibration technology and coated with zein. The beads prepared with alginate alone were shown to have loading and entrapment efficiencies of 35% and 70% w/w, respectively. Addition of ispaghula in alginate showed a significant increase (p < 0.05) in the drug loading (42% w/w) and entrapment efficiency (84% w/w). Fourier-transform infrared spectroscopy confirmed the presence of ispaghula and zein coating in the alginate beads as well as the ibuprofen loading. Scanning electron microscopy revealed better spherical geometry in the beads with ispaghula. The surface morphology of the uncoated beads was rough due to crystalline and surface drug. The zein coating has produced a smoother surface and particle adhesion. Differential scanning calorimetry has shown a reduction in drug crystallinity. Alginate beads extended the drug release for 4 h and the presence of zein extended the release for 6 h.
    Matched MeSH terms: Psyllium
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links