Displaying publications 1 - 20 of 33 in total

Abstract:
Sort:
  1. Takaoka H, Srisuka W, Saeung A, Otsuka Y, Choochote W
    Trop Biomed, 2012 Sep;29(3):381-90.
    PMID: 23018501
    Simulium (Nevermannia) chomthongense sp. nov. is described from female, male, pupal and larval specimens collected from Doi Inthanon National Park and Doi Phahompok National Park, Chiang Mai, Thailand. This new species, first reported as S. (Eusimulium) sp. A, and later regarded as S. (N.) caudisclerum Takaoka & Davies, described from peninsular Malaysia, is distinguished from S. (N.) caudisclerum in the male by the number of enlarged upper-eye facets and the relative size of the hind basitarsus against the hind tibia and femur, and in the pupa by the relative length of the stalks of paired filaments against the common basal stalk and the color of the dorsal surface of abdominal segments 1- 3 (or 4). Taxonomic and molecular notes are provided to separate this new species from four other known species of the vernum species-group, which share an accessory sclerite on the larval abdomen, a rare characteristic in this species-group.
    Matched MeSH terms: Simuliidae/genetics
  2. Pramual P, Bunchom N, Saijuntha W, Tada I, Suganuma N, Agatsuma T
    Trop Biomed, 2019 Dec 01;36(4):938-957.
    PMID: 33597465
    Genetic variation based on mitochondrial cytochrome c oxidase I (COI) and II (COII) sequences was investigated for three black fly nominal species, Simulium metallicum Bellardi complex, S. callidum Dyar and Shannon, and S. ochraceum Walker complex, which are vectors of human onchocerciasis from Guatemala. High levels of genetic diversity were found in S. metallicum complex and S. ochraceum complex with maximum intraspecific genetic divergences of 11.39% and 4.25%, respectively. Levels of genetic diversity of these nominal species are consistent with species status for both of them as they are cytologically complexes of species. Phylogenetic analyses revealed that the S. metallicum complex from Guatemala divided into three distinct clades, two with members of this species from several Central and South American countries and another exclusively from Mexico. The Simulium ochraceum complex from Guatemala formed a clade with members of this species from Mexico and Costa Rica while those from Ecuador and Colombia formed another distinct clade. Very low diversity in S. callidum was found for both genes with maximum intraspecific genetic divergence of 0.68% for COI and 0.88% for COII. Low genetic diversity in S. callidum might be a consequence of the result being informative of only recent population history of the species.
    Matched MeSH terms: Simuliidae/genetics*
  3. Low VL, Takaoka H, Pramual P, Adler PH, Ya'cob Z, Huang YT, et al.
    Sci Rep, 2016 Feb 03;6:20346.
    PMID: 26839292 DOI: 10.1038/srep20346
    Perspicuous assessments of taxonomic boundaries and discovery of cryptic taxa are of paramount importance in interpreting ecological and evolutionary phenomena among black flies (Simuliidae) and combating associated vector-borne diseases. Simulium tani Takaoka & Davies is the largest and perhaps the most taxonomically challenging species complex of black flies in the Oriental Region. We use a DNA sequence-based method to delineate currently recognized chromosomal and morphological taxa in the S. tani complex on the Southeast Asian mainland and Taiwan, while elucidating their phylogenetic relationships. A molecular approach using multiple genes, coupled with morphological and chromosomal data, supported recognition of cytoform K and morphoform 'b' as valid species; indicated that S. xuandei, cytoform L, and morphoform 'a' contain possible cryptic species; and suggested that cytoform B is in the early stages of reproductive isolation whereas lineage sorting is incomplete in cytoforms A, C, and G.
    Matched MeSH terms: Simuliidae/genetics
  4. Low VL, Adler PH, Takaoka H, Ya'cob Z, Lim PE, Tan TK, et al.
    PLoS One, 2014;9(6):e100512.
    PMID: 24941043 DOI: 10.1371/journal.pone.0100512
    The population genetic structure of Simulium tani was inferred from mitochondria-encoded sequences of cytochrome c oxidase subunits I (COI) and II (COII) along an elevational gradient in Cameron Highlands, Malaysia. A statistical parsimony network of 71 individuals revealed 71 haplotypes in the COI gene and 43 haplotypes in the COII gene; the concatenated sequences of the COI and COII genes revealed 71 haplotypes. High levels of genetic diversity but low levels of genetic differentiation were observed among populations of S. tani at five elevations. The degree of genetic diversity, however, was not in accordance with an altitudinal gradient, and a Mantel test indicated that elevation did not have a limiting effect on gene flow. No ancestral haplotype of S. tani was found among the populations. Pupae with unique structural characters at the highest elevation showed a tendency to form their own haplotype cluster, as revealed by the COII gene. Tajima's D, Fu's Fs, and mismatch distribution tests revealed population expansion of S. tani in Cameron Highlands. A strong correlation was found between nucleotide diversity and the levels of dissolved oxygen in the streams where S. tani was collected.
    Matched MeSH terms: Simuliidae/genetics*
  5. Adler PH, Huang YT, Reeves WK, Kim SK, Otsuka Y, Takaoka H
    PLoS One, 2013;8(8):e70765.
    PMID: 23951001 DOI: 10.1371/journal.pone.0070765
    To determine the geographic origin of the black fly Simulium suzukii on Okinawa Island, Japan, macrogenomic profiles derived from its polytene chromosomes were compared with those of mainland and other insular populations of S. suzukii and of the isomorphic Simulium tani species complex. The Okinawan population is a chromosomally unique cytoform, designated 'D,' which is essentially monomorphic and differs by about 27 fixed rearrangements from the chromosomal standard sequence for the subgenus Simulium and by two fixed differences from its nearest known relative, representing the type of S. suzukii, on the main islands of Japan. Chromosomal band sequences revealed two additional, sympatric cytoforms of S. suzukii, designated 'A' and 'B,' each with species status, in Korea, and a third cytoform, designated 'C,' on Hokkaido, Japan. A new cytoform, 'K,' of S. tani from Malaysia, representing the type of S. tani, is more closely related to cytoforms in Thailand, as are populations from Taiwan previously treated as S. suzukii but more closely aligned with S. tani and newly recognized as cytoform 'L' of the latter nominal species. Rooting of chromosomal band sequences by outgroup comparisons allowed directionality of chromosomal rearrangements to be established, enabling phylogenetic inference of cytoforms. Of 41 macrogenomic rearrangements discovered in the five new cytoforms, four provide evidence for a stepwise origin of the Okinawan population from populations characteristic of the main islands of Japan. The macrogenomic approach applied to black flies on Okinawa Island illustrates its potential utility in defining source areas for other species of flies including those that might pose medical and veterinary risks.
    Matched MeSH terms: Simuliidae/genetics
  6. Adler PH, Takaoka H, Sofian-Azirun M, Low VL, Ya'cob Z, Chen CD, et al.
    PLoS One, 2016;11(10):e0163881.
    PMID: 27695048 DOI: 10.1371/journal.pone.0163881
    The increasing attention on Vietnam as a biodiversity hotspot prompted an investigation of the potential for cryptic diversity in black flies, a group well known elsewhere for its high frequency of isomorphic species. We analyzed the banding structure of the larval polytene chromosomes in the Simulium tuberosum species group to probe for diversity beyond the morphological level. Among 272 larvae, 88 different chromosomal rearrangements, primarily paracentric inversions, were discovered in addition to 25 already known in the basic sequences of the group in Asia. Chromosomal diversity in Vietnam far exceeds that known for the group in Thailand, with only about 5% of the rearrangements shared between the two countries. Fifteen cytoforms and nine morphoforms were revealed among six nominal species in Vietnam. Chromosomal evidence, combined with available molecular and morphological evidence, conservatively suggests that at least five of the cytoforms are valid species, two of which require formal names. The total chromosomal rearrangements and species (15) now known from the group in Vietnam far exceed those of any other area of comparable size in the world, supporting the country's status as a biodiversity hotspot. Phylogenetic inference based on uniquely shared, derived chromosomal rearrangements supports the clustering of cytoforms into two primary lineages, the Simulium tani complex and the Southeast Asian Simulium tuberosum subgroup. Some of these taxa could be threatened by habitat destruction, given their restricted geographical distributions and the expanding human population of Vietnam.
    Matched MeSH terms: Simuliidae/genetics*
  7. Low VL, Adler PH, Sofian-Azirun M, Srisuka W, Saeung A, Huang YT, et al.
    Parasit Vectors, 2015 May 29;8:297.
    PMID: 26022092 DOI: 10.1186/s13071-015-0911-5
    BACKGROUND: Allopatric populations present challenges for biologists working with vectors. We suggest that conspecificity can be concluded in these cases when data from four character sets-chromosomal, ecological, molecular, and morphological-express variation no greater between the allopatric populations than between corresponding sympatric populations. We use this approach to test the conspecificity of Simulium nodosum Puri on the mainland of Southeast Asia and Simulium shirakii Kono & Takahasi in Taiwan. The validity of these two putative species has long been disputed given that they are morphologically indistinguishable.

    FINDINGS: The mitochondria-encoded cytochrome c oxidase subunit I (COI), 12S rRNA, and 16S rRNA genes and the nuclear-encoded 28S rRNA gene support the conspecific status of S. nodosum from Myanmar, Thailand, and Vietnam and S. shirakii from Taiwan; 0 to 0.19 % genetic differences between the two taxa suggest intraspecific polymorphism. The banding patterns of the polytene chromosomes of the insular Taiwanese population of S. shirakii and mainland populations of S. nodosum are congruent. The overlapping ranges of habitat characteristics and hosts of S. nodosum and S. shirakii corroborate the chromosomal, molecular, and morphological data.

    CONCLUSIONS: Four independent sources of evidence (chromosomes, DNA, ecology, and morphology) support the conspecificity of S. nodosum and S. shirakii. We, therefore, synonymize S. shirakii with S. nodosum. This study provides a guide for applying the procedure of testing conspecificity to other sets of allopatric vectors.

    Matched MeSH terms: Simuliidae/genetics
  8. Takaoka H, Low VL, Sofian-Azirun M, Otsuka Y, Ya'cob Z, Chen CD, et al.
    Parasit Vectors, 2016;9:136.
    PMID: 26961508 DOI: 10.1186/s13071-016-1393-9
    A species of Simulium in the Simulium melanopus species-group of the subgenus Simulium (formerly misidentified as S. laterale Edwards from Sabah and Sarawak, Malaysia) is suspected to have dimorphic male scutal color patterns linked with different numbers of upper-eye facets. This study aimed to confirm whether or not these two forms of adult males represent a single species.
    Matched MeSH terms: Simuliidae/genetics
  9. Low VL, Takaoka H, Adler PH, Ya'cob Z, Norma-Rashid Y, Chen CD, et al.
    Med Vet Entomol, 2015 Sep;29(3):330-7.
    PMID: 25968459 DOI: 10.1111/mve.12120
    A multi-locus approach was used to examine the DNA sequences of 10 nominal species of blackfly in the Simulium subgenus Gomphostilbia (Diptera: Simuliidae) in Malaysia. Molecular data were acquired from partial DNA sequences of the mitochondria-encoded cytochrome c oxidase subunit I (COI), 12S rRNA and 16S rRNA genes, and the nuclear-encoded 18S rRNA and 28S rRNA genes. No single gene, nor the concatenated gene set, resolved all species or all relationships. However, all morphologically established species were supported by at least one gene. The multi-locus sequence analysis revealed two distinct evolutionary lineages, conforming to the morphotaxonomically recognized Simulium asakoae and Simulium ceylonicum species groups.
    Matched MeSH terms: Simuliidae/genetics*
  10. Pramual P, Thaijarern J, Sofian-Azirun M, Ya'cob Z, Hadi UK, Takaoka H
    J Med Entomol, 2015 Sep;52(5):829-36.
    PMID: 26336220 DOI: 10.1093/jme/tjv080
    Simulium feuerborni Edwards is geographically widespread in Southeast Asia. Previous cytogenetic study in Thailand revealed that this species is a species complex composed of two cytoforms (A and B). In this study, we cytologically examined specimens obtained from the Cameron Highlands, Malaysia, and Puncak, Java, Indonesia. The results revealed two additional cytoforms (C and D) of S. feuerborni. Specimens from Malaysia represent cytoform C, differentiated from other cytoforms by a fixed chromosome inversion on the long arm of chromosome III (IIIL-5). High frequencies of the B chromosome (33-83%) were also observed in this cytoform. Specimens from Indonesia represent the cytoform D. This cytoform is differentiated from others by a fixed chromosome inversion difference on the long arm of chromosome II (IIL-4). Mitochondrial DNA sequences support genetic differentiation among cytoforms A, B, and C. The pairwise F(ST) values among these cytoforms were highly significantly consistent with the divergent lineages of the cytoforms in a median-joining haplotype network. However, a lack of the sympatric populations prevented us from testing the species status of the cytoforms.
    Matched MeSH terms: Simuliidae/genetics*
  11. Low VL, Takaoka H, Pramual P, Adler PH, Ya'cob Z, Chen CD, et al.
    J Med Entomol, 2016 07;53(4):972-976.
    PMID: 27208009
    We access the molecular diversity of the black fly Simulium nobile De Mejiere, using the universal cytochrome c oxidase subunit I (COI) barcoding gene, across its distributional range in Southeast Asia. Our phylogenetic analyses recovered three well-supported mitochondrial lineages of S. nobile, suggesting the presence of cryptic species. Lineage A is composed of a population from Sabah, East Malaysia (Borneo); lineage B represents the type population from Java, Indonesia; and lineage C includes populations from the mainland of Southeast Asia (Peninsular Malaysia and Thailand). The genetic variation of lineage C on the mainland is greater than that of lineages A and B on the islands of Borneo and Java. Our study highlights the value of a molecular approach in assessing species status of simuliids in geographically distinct regions.
    Matched MeSH terms: Simuliidae/genetics*
  12. Takaoka H, Low VL, Tan TK, Ya'cob Z, Sofian-Azirun M, Dhang Chen C, et al.
    J Med Entomol, 2019 02 25;56(2):432-440.
    PMID: 30597034 DOI: 10.1093/jme/tjy222
    Simulium (Gomphostilbia) yvonneae sp. nov. is described based on adults, pupae, and mature larvae from Vietnam. This new species belongs to the Simulium duolongum subgroup in the S. batoense species-group of the subgenus Gomphostilbia Enderlein. It is distinguished by having a relatively larger number of male upper-eye facets in 16 vertical columns and 16 horizontal rows and a pupal gill with eight filaments arranged as 3+(1+2)+2 from dorsal to ventral, of which two filaments of the ventral pair are 1.8 times as long as the longest filament of the middle and dorsal triplets. Morphological comparisons are made to distinguish this new species from all 22 related species. The genetic distinctiveness of this new species in the S. duolongum subgroup is also presented based on the DNA barcoding COI gene.
    Matched MeSH terms: Simuliidae/genetics
  13. Takaoka H, Low VL, Srisuka W, Ya'cob Z, Saeung A
    J Med Entomol, 2018 Oct 25;55(6):1453-1463.
    PMID: 30060220 DOI: 10.1093/jme/tjy109
    Seven populations of Simulium parahiyangum Takaoka & Sigit (Diptera: Simuliidae), a geographically widespread nominal species of black fly in Southeast Asia, were morphologically and molecularly studied. Three morphoforms based on male and pupal morphological features, and two primary lineages based on the COI gene sequence analysis were recognized. Morphoform 1 (lineage 1) from Sarawak, Malaysia, is identified as S. parahiyangum sensu stricto and morphoform 2 (lineage 2) from Thailand and Vietnam, and morphoform 3 (lineage 1) from Peninsular Malaysia are each regarded as distinct species, although morphoform 3 is partially homosequential for the COI gene with morphoform 1. Morphoforms 2 and 3 are described as Simulium ngaoense sp. nov. and Simulium sazalyi sp. nov., respectively. Overall, S. parahiyangum is not a single geographic generalist but a composite of multiple species.
    Matched MeSH terms: Simuliidae/genetics
  14. Takaoka H, Srisuka W, Low VL, Saeung A
    J Med Entomol, 2019 01 08;56(1):86-94.
    PMID: 30398648 DOI: 10.1093/jme/tjy178
    Simulium undecimum sp. nov. is described from Thailand. This new species is assigned to the Simulium multistriatum species-group, one of the 20 species-groups of the subgenus Simulium in the Oriental Region. It is characterized by the female cibarium with minute processes, male ventral plate with a narrow body having two vertical rows of distinct teeth on the posterior surface and without setae on the anterior and lateral surfaces, pupal gill with eight short filaments decreasing in length from dorsal to ventral, and divergent at an angle of around 90 degrees when viewed laterally, spine-combs only on abdominal segments 7 and 8, and cocoon wall-pocket shaped with anterolateral windows. Taxonomic notes to separate this new species from related species in Thailand and other countries are given. This new species is the 11th nominal member of this species-group recorded in Thailand. An analysis of the COI gene sequences shows that it is most closely related with S. malayense Takaoka & Davies (cytoform A) from Thailand but they are distantly separated by 3.01-8.87%.
    Matched MeSH terms: Simuliidae/genetics
  15. Takaoka H, Srisuka W, Low VL, Saeung A
    J Med Entomol, 2019 02 25;56(2):408-415.
    PMID: 30398654 DOI: 10.1093/jme/tjy180
    A man-biting black fly species so far regarded as Simulium rufibasis Brunetti in Thailand was morphologically analyzed. It was found to be almost indistinguishable in the female from S. rufibasis sensu stricto but distinguishable in the male by the slender fore basitarsus and abdominal segments 2, 6, and 7 each with a pair of shiny dorsolateral patches, and in the pupa by the absence of spine-combs on abdominal segment 7 and terminal hooks on segment 9. It is described as a new species, Simulium tenebrosum. Taxonomic notes are given to separate it from all 11 known species of the S. rufibasis subgroup of the Simulium (Simulium) tuberosum species-group. An analysis of the COI gene sequences shows that this new species is distantly separated from the closely related species.
    Matched MeSH terms: Simuliidae/genetics
  16. Adler PH, Fukuda M, Takaoka H, Reeves WK, Kim SK, Otsuka Y
    J Med Entomol, 2020 02 27;57(2):388-403.
    PMID: 31746337 DOI: 10.1093/jme/tjz197
    The widespread nominal black fly Simulium (Simulium) rufibasis Brunetti was reexamined morphologically, chromosomally, and molecularly to determine the status of populations in Japan and Korea with respect to S. rufibasis from the type locality in India and to all other known species in the S. (S.) tuberosum species-group. Morphological comparisons established that the species previously known as S. rufibasis in Japan and Korea is distinct from all other species. Consequently, it was described and illustrated as a new species, Simulium (S.) yamatoense. Simulium yokotense Shiraki, formerly a synonym of S. rufibasis, was morphologically reevaluated and considered a species unplaced to species-group in the subgenus Simulium. Chromosomal analyses of S. yamatoense sp. nov. demonstrated that it is unique among all cytologically known species of the S. tuberosum group and is the sister species of the Taiwanese species tentatively known as S. (S.) arisanum Shiraki. Populations of S. yamatoense sp. nov. included two cytoforms, based on the sex chromosomes. Cytoform A, including topotypical representatives, was found in Kyushu, Japan, whereas cytoform B was found in Korea and Honshu, Japan. Molecular analysis based on the COI mitochondrial gene generally corroborated morphological and chromosomal data that S. yamatoense sp. nov. is a distinct species and, like the chromosomal data, indicate that it is most closely related to S. arisanum, with interspecific genetic distance of 2.92-4.63%.
    Matched MeSH terms: Simuliidae/genetics
  17. Takaoka H, Srisuka W, Saeung A, Maleewong W, Low VL
    J Med Entomol, 2017 11 07;54(6):1543-1551.
    PMID: 28968910 DOI: 10.1093/jme/tjx134
    Simulium (Gomphostilbia) laosense sp. nov. is described based on adults, pupae, and mature larvae from Laos. This new species is placed in the Simulium batoense species-group of the subgenus Gomphostilbia Enderlein. It is characterized by the pupal gill with eight filaments arranged as 3 + 3 + 2 from dorsal to ventral, of which an inner filament of the ventral pair is slightly longer than its counter filament, and is 1.7-1.8 times as long as filaments of the middle triplet. Taxonomic notes are provided to distinguish this new species from Simulium (G.) johorense Takaoka, Sofian-Azirun & Ya'cob from Peninsular Malaysia and four other related species. The phylogenetic position of this new species in the S. batoense species-group is also presented based on the mitochondrial COI gene. This new species represents the second species known from Laos.
    Matched MeSH terms: Simuliidae/genetics
  18. Takaoka H, Srisuka W, Low VL, Saeung A
    J Med Entomol, 2018 05 04;55(3):561-568.
    PMID: 29361011 DOI: 10.1093/jme/tjx241
    Simulium (Simulium) phraense sp. nov. (Diptera: Simuliidae) is described from females, males, pupae, and larvae from Thailand. This new species is placed in the Simulium striatum species group and is most similar to Simulium (Simulium) nakhonense Takaoka & Suzuki (Diptera: Simuliidae) from Thailand among species of the same species group but is barely distinguished from the latter species by lacking annular ridges on the surface of the pupal gill filaments. The fast-evolving nuclear big zinc finger (BZF) gene has successfully differentiated this new species from its allies, S. (S.) nakhonense and Simulium (Simulium) chiangmaiense Takaoka & Suzuki (Diptera: Simuliidae) of the S. striatum species group. The BZF gene sequences show that this new species is more closely related to S. (S.) nakhonense than to S. (S.) chiangmaiense, further supporting its morphological classification.
    Matched MeSH terms: Simuliidae/genetics
  19. Takaoka H, Low VL, Tan TK, Huang YT, Fukuda M, Ya'cob Z
    J Med Entomol, 2018 06 28;55(4):884-892.
    PMID: 29538704 DOI: 10.1093/jme/tjy028
    A new black fly species, Simulium haiduanense Takaoka, Low & Huang (Diptera: Simuliidae), is described on the basis of females, males, pupae, and mature larvae from Taiwan. This new species is placed in the Simulium argentipes species-group of the subgenus Simulium (Diptera: Simuliidae) and is characterized by the yellowish female legs, ovipositor valves rounded apically and with its inner margin concave, claw with a small subbasal tooth, male style without a basal protuberance, pupal gill with eight filaments, corbicular cocoon, and larval abdomen lacking paired protuberances. It represents the first record of the S. argentipes species-group from Taiwan. Taxonomic notes are given to separate this new species from all eight species in the same species-group. The phylogenetic relationships of this new species with four related species are presented.
    Matched MeSH terms: Simuliidae/genetics
  20. Adler PH, Takaoka H, Sofian-Azirun M, Chen CD, Suana IW
    Acta Trop, 2019 May;193:1-6.
    PMID: 30772330 DOI: 10.1016/j.actatropica.2019.02.017
    A recently described species of black fly, Simulium wayani Takaoka and Chen, from the island of Timor was chromosomally mapped to provide insights into its evolutionary and biogeographic history. The morphologically based species status of S. wayani is supported by a suite of fixed chromosomal rearrangements and unique sex chromosomes derived primarily from a large pool of polymorphisms in the S. ornatipes complex in Australia. The banding patterns of its polytene chromosomes indicate that S. wayani is closely related to a pair of homosequential cryptic species (S. norfolkense Dumbleton and S. ornatipes cytoform A2) in the S. ornatipes Skuse complex on mainland Australia; all three species uniquely share the same amplified band in their chromosomal complement. The low level of polymorphism and heterozygosity in S. wayani, relative to Australian populations of the S. ornatipes complex, suggests few colonization events from the larger land mass.
    Matched MeSH terms: Simuliidae/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links