Staphylococci are Gram-positive bacteria that are ubiquitous in the environment and able to form biofilms on a range of surfaces. They have been associated with a range of human health issues such as medical device-related infection, localized skin infection, or direct infection caused by toxin production. The extracellular material produced by these bacteria resists antibiotics and host defence mechanism which complicates the treatment process. The commonly reported Staphylococcus species are Staphylococcus aureus and S. epidermidis as they inhabit human bodies. However, the emergence of other staphylococci, such as S. haemolyticus, S. lugdunensis, S. saprophyticus, S. capitis, S. saccharolyticus, S. warneri, S. cohnii, and S. hominis, is also of concern and they have been associated with biofilm formation. This review critically assesses recent cases on the biofilm formation by S. aureus, S. epidermidis, and other staphylococci reported in health-related environments. The control of biofilm formation by staphylococci using natural compounds is specifically discussed as they represent potential anti-biofilm agents which may reduce the burden of antibiotic resistance.
INTRODUCTION: Coagulase-negative staphylococci (CoNS) are a group of micro-organisms that are increasingly implicated as a cause of significant infection and the leading cause of bloodstream infection (BSI). One important predictor of true BSI is the isolation of CoNS from multiple blood cultures, presuming that the isolates represent the same species. Thus the objective of this study was to determine the significance of repeated CoNS isolated from blood cultures.
METHODOLOGY: This was a prospective laboratory study which was initiated in June 2007 and lasted until July 2008. CoNS isolates were obtained from patients who had two positive blood cultures within a 14-day interval. CoNS were identified to the species level using an API-Staph, and antibiotics susceptibility testing was performed according to Clinical and Laboratory Standards Institute specifications. Strain relatedness was confirmed using pulsed-field gel electrophoresis.
RESULTS: During the study period, 202 CoNS-positive samples were isolated from 101 patients. The most common species isolated was Staphylococcus epidermidis (59.0%), and 83.2% of the patients isolated the same species of CoNS from repeated blood cultures. Among the isolates of the same species, only 40.7% had the same antibiogram. CoNS with the same species and antibiogram had 93.3% probability of belonging to the same strain. Most (65.5%) of the patients were treated with antibiotics, primarily from the glycopeptides group.
CONCLUSION: Speciation and antibiogram of CoNS from repeated blood cultures are adequate in determining the significance of repeated CoNS isolated from blood cultures.
We report the draft genome sequence of Staphylococcus sp. strain AL1, which degrades quorum-sensing molecules (namely, N-acyl homoserine lactones). To the best of our knowledge, this is the first documentation that reports the whole genome sequence and quorum-quenching activity of Staphylococcus sp. strain AL1.
This study aims to assess the association between microbial composition, biofilm formation and chronic otorhinolaryngologic disorders in Malaysia. A total of 45 patients with chronic rhinosinusitis, chronic tonsillitis and chronic suppurative otitis media and 15 asymptomatic control patients were studied. Swab samples were obtained from these subjects. Samples were studied by conventional microbiological culturing, PCR-based microbial detection and Confocal Laser Scanning Microscopy (CLSM). Haemophilus influenzae, Staphylococcus aureus, Streptococcus pneumoniae, coagulase-negative staphylococci (CoNS) and other Streptococcus species were detected in subjects of both patient and control groups. Biofilm was observed in approximately half of the smear prepared from swab samples obtained from subjects of the patient group. Most of these were polymicrobial biofilms. S. aureus biofilm was most prevalent among nasal samples while H. influenzae biofilm was more common among ear and throat samples. Results from this study supported the hypothesis that chronic otorhinolaryngologic diseases may be biofilm related. Due to the presence of unculturable bacteria in biofilms present in specimens from ear, nose and throat, the use of molecular methods in combination with conventional microbiological culturing has demonstrated an improvement in the detection of bacteria from such specimens in this study.