Numerous aetiopathologic factors have been enumerated as the possible causes of injuries to the common peroneal nerve at knee. This report presents a case of postero-lateral displacement of the upper end of fibula consequent to the displacement of fractured lateral tibial plateau leading to common peroneal nerve palsy which has not been reported before.
The application of bone substitutes and cements has a long standing history in augmenting fractures as a complement to routine fracture fixation techniques. Nevertheless, such use is almost always in conjunction with definite means of fracture fixation such as intramedullary pins or bone plates. The idea of using biomaterials as the primary fixation bears the possibility of simultaneous fixation and bone enhancement. Intramedullary recruitment of bone cements is suggested in this study to achieve this goal. However, as the method needs primary testings in animal models before human implementation, and since the degree of ambulation is not predictable in animals, this pilot study only evaluates the outcomes regarding the feasibility and safety of this method in the presence of primary bone fixators. A number of two sheep were used in this study. Tibial transverse osteotomies were performed in both animals followed by external skeletal fixation. The medullary canals, which have already been prepared by removing the marrow through proximal and distal drill holes, were then injected with calcium phosphate cement (CPC). The outcomes were evaluated postoperatively by standard survey radiographs, morphology, histology and biomechanical testings. Healing processes appeared uncomplicated until week four where one bone fracture recurred due to external fixator failure. The results showed 56% and 48% cortical thickening, compared to the opposite site, in the fracture site and proximal and distal diaphyses respectively. This bone augmentative effect resulted in 264% increase in bending strength of the fracture site and 148% increase of the same value in the adjacent areas of diaphyses. In conclusion, IMCO, using CPC in tibia of sheep, is safe and biocompatible with bone physiology and healing. It possibly can carry the osteopromotive effect of the CPCs to provide a sustained source of bone augmentation throughout the diaphysis. Although the results must be considered preliminary, this method has possible advantages over conventional methods of bone fixation at least in bones with compromised quality (i.e. osteoporosis and bone cysts), where rigid metal implants may jeopardize eggshell cortices.
We studied the factors influencing the mid-term outcomes of tibial plateau fractures treated conservatively (n=21) and surgically (n=27) from December 1994 to December 1997. Joint stability was an important prognostic determinant. In the surgical group, the most important factor was good anatomical reduction. Functional outcomes were comparable between the conservative and surgical groups. We concluded that conservative treatment is a valid option for fractures with minimal displacement and surgical treatment is justified for severely displaced or depressed fractures. Attention must be paid to the recognition and restoration of joint stability and articular surface congruency for a satisfactory outcome.
The choice between limb salvage and primary amputation in a severely injured limb is at time difficult. A case of severe Gustilo type-IIIB open fracture of the tibia with massive soft tissue loss is presented to highlight the immediate and definitive treatment undertaken to preserve the limb.
Pilon fractures are commonly caused by high energy trauma and can result in long-term immobilization of patients. The use of an external fixator i.e. the (1) Delta, (2) Mitkovic or (3) Unilateral frame for treating type III pilon fractures is generally recommended by many experts owing to the stability provided by these constructs. This allows this type of fracture to heal quickly whilst permitting early mobilization. However, the stability of one fixator over the other has not been previously demonstrated. This study was conducted to determine the biomechanical stability of these external fixators in type III pilon fractures using finite element modelling. Three-dimensional models of the tibia, fibula, talus, calcaneus, navicular, cuboid, three cuneiforms and five metatarsal bones were reconstructed from previously obtained CT datasets. Bones were assigned with isotropic material properties, while the cartilage was assigned as hyperelastic springs with Mooney-Rivlin properties. Axial loads of 350 N and 70 N were applied at the tibia to simulate the stance and the swing phase of a gait cycle. To prevent rigid body motion, the calcaneus and metatarsals were fixed distally in all degrees of freedom. The results indicate that the model with the Delta frame produced the lowest relative micromovement (0.03 mm) compared to the Mitkovic (0.05 mm) and Unilateral (0.42 mm) fixators during the stance phase. The highest stress concentrations were found at the pin of the Unilateral external fixator (509.2 MPa) compared to the Mitkovic (286.0 MPa) and the Delta (266.7 MPa) frames. In conclusion, the Delta external fixator was found to be the most stable external fixator for treating type III pilon fractures.
Although non-operative treatment is a mainstay of tibial fracture management in children, certain fractures require a surgical approach. However, choices concerning optimal methods and implants are difficult. The purpose of this study was to determine the effectiveness of percutaneous plating of tibial fractures in children.
A case of traumatic posterior cruciate ligament (PCL) avulsion fracture presenting with unusual radiographic findings is described. CT scan of the right knee showed features suggestive of combined ACL and PCL avulsion fractures. Arthroscopic findings showed that the injury was in fact a PCL avulsion fracture that was displaced anteriorly so as to mimic an ACL avulsion fracture on CT scan.
This preliminary report is on two patients with congenital pseudoarthrosis of the tibia who had a persistent nonunion following intramedullary rodding and bone grafting. We do not advocate repeated surgery to achieve union. When limb length discrepancy becomes greater than 5 cm, we proceeded with an Ilizarov procedure with the primary aim of equalizing limb length rather than achieving union. Healing of the pseudoarthrosis occurred in both patients after lengthening over the intramedullary rod without compression of the nonunion site. We believe that union occurs because of hyperaemia during the lengthening. This approach minimizes the repeated surgeries that are usually needed and thus ensures a more normal childhood without frequent hospitalizations.