Displaying all 5 publications

Abstract:
Sort:
  1. Wan Jamaludin WF, Mohamad Yusoff F, Ismail NA, Mohd Idris MR, Palaniappan S, Ng CKK, et al.
    Malays J Pathol, 2018 Apr;40(1):61-67.
    PMID: 29704386 MyJurnal
    INTRODUCTION: Immunosuppressive state due to haematological malignancies and chemotherapy may cause disruption to wound healing despite optimum conventional treatment and standard wound dressing. Non-healing wounds are predisposed to infection whereas chemotherapy dose reductions or interruptions are associated with poor survival.

    BACKGROUND: Mononuclear cells contain progenitor cells including haematopoietic and mesenchymal stem cells, endothelial progenitor cells and fibroblasts which facilitate wound healing through cytokines, growth factor secretions, cell-cell interactions and provision of extracellular matrix scaffolding. Clinical applications of autologous mononuclear cells therapy in wound healing in non-malignant patients with critical limb ischaemia have been reported with remarkable outcome.

    METHODS: We report three patients with haematological malignancies undergoing chemotherapy, who received autologous mononuclear cells implantation to treat non-healing wound after optimum conventional wound care. The sources of mononuclear cells (MNC) were from bone marrow (BM), peripheral blood (PB) and mobilised PB cells (mPB-MNC) using granulocyte colony stimulating factor (G-CSF). The cells were directly implanted into wound and below epidermis. Wound sizes and adverse effects from implantation were assessed at regular intervals.

    RESULTS: All patients achieved wound healing within three months following autologous mononuclear cells implantation. No implantation adverse effects were observed.

    CONCLUSIONS: Autologous mononuclear cells therapy is a feasible alternative to conventional wound care to promote complete healing in non-healing wounds compounded by morbid factors such as haematological malignancies, chemotherapy, diabetes mellitus (DM), infections and prolonged immobility.

    Matched MeSH terms: Transplantation, Autologous/methods
  2. Samsudin EZ, Kamarul T
    Knee Surg Sports Traumatol Arthrosc, 2016 Dec;24(12):3912-3926.
    PMID: 26003481
    PURPOSE: This paper aims to review the current evidence for autologous chondrocyte implantation (ACI) generations relative to other treatment modalities, different cell delivery methods and different cell source application.

    METHODS: Literature search was performed to identify all level I and II studies reporting the clinical and structural outcome of any ACI generation in human knees using the following medical electronic databases: PubMed, EMBASE, Cochrane Library, CINAHL, SPORTDiscus and NICE healthcare database. The level of evidence, sample size calculation and risk of bias were determined for all included studies to enable quality assessment.

    RESULTS: Twenty studies were included in the analysis, reporting on a total of 1094 patients. Of the 20 studies, 13 compared ACI with other treatment modalities, seven compared different ACI cell delivery methods, and one compared different cell source for implantation. Studies included were heterogeneous in baseline design, preventing meta-analysis. Data showed a trend towards similar outcomes when comparing ACI generations with other repair techniques and when comparing different cell delivery methods and cell source selection. Majority of the studies (80 %) were level II evidence, and overall the quality of studies can be rated as average to low, with the absence of power analysis in 65 % studies.

    CONCLUSION: At present, there are insufficient data to conclude any superiority of ACI techniques. Considering its two-stage operation and cost, it may be appropriate to reserve ACI for patients with larger defects or those who have had inadequate response to other repair procedures until hard evidence enables specific clinical recommendations be made.

    LEVEL OF EVIDENCE: II.

    Matched MeSH terms: Transplantation, Autologous/methods
  3. Thong FY, Mansor A, Ramalingam S, Yusof N
    Cell Tissue Bank, 2020 Mar;21(1):107-117.
    PMID: 31894432 DOI: 10.1007/s10561-019-09804-4
    Bone allografts donated by other individuals offer a viable alternative to autograft. Risks of disease transmission are overcome by sterilizing the bone; unfortunately sterilization methods generally affect bone functional properties including osteogenic potential and biomechanical integrity. This study aimed to determine any enhancement effect when gamma sterilised allografts was impregnated with autologous bone marrow in improving the rate and quality of integration in metaphyseal-tibial defects of rabbits. Almost all subjects showed 50% of the defect being covered by new bones by the third week and smaller residual defect size in the treated group at the fifth week. Hounsfield units at the defect site showed increasing healing in all samples, with the treated group having an apparent advantage although insignificant (p > 0.05). In the histopathological score evaluating healing over cortical and cancellous bone at the fracture site showed only slight variations between the groups (p > 0.05). Therefore no enhanced healing by the autologous bone marrow was observed when added to the bone allografts in treating the unicortical defects.
    Matched MeSH terms: Transplantation, Autologous/methods
  4. Munirah S, Samsudin OC, Chen HC, Salmah SH, Aminuddin BS, Ruszymah BH
    J Bone Joint Surg Br, 2007 Aug;89(8):1099-109.
    PMID: 17785753
    Ovine articular chondrocytes were isolated from cartilage biopsy and culture expanded in vitro. Approximately 30 million cells per ml of cultured chondrocytes were incorporated with autologous plasma-derived fibrin to form a three-dimensional construct. Full-thickness punch hole defects were created in the lateral and medial femoral condyles. The defects were implanted with either an autologous 'chondrocyte-fibrin' construct (ACFC), autologous chondrocytes (ACI) or fibrin blanks (AF) as controls. Animals were killed after 12 weeks. The gross appearance of the treated defects was inspected and photographed. The repaired tissues were studied histologically and by scanning electron microscopy analysis. All defects were assessed using the International Cartilage Repair Society (ICRS) classification. Those treated with ACFC, ACI and AF exhibited median scores which correspond to a nearly-normal appearance. On the basis of the modified O'Driscoll histological scoring scale, ACFC implantation significantly enhanced cartilage repair compared to ACI and AF. Using scanning electron microscopy, ACFC and ACI showed characteristic organisation of chondrocytes and matrices, which were relatively similar to the surrounding adjacent cartilage. Implantation of ACFC resulted in superior hyaline-like cartilage regeneration when compared with ACI. If this result is applicable to humans, a better outcome would be obtained than by using conventional ACI.
    Matched MeSH terms: Transplantation, Autologous/methods
  5. Liau LL, Hassan MNFB, Tang YL, Ng MH, Law JX
    Int J Mol Sci, 2021 Jan 28;22(3).
    PMID: 33525349 DOI: 10.3390/ijms22031269
    Osteoarthritis (OA) is a degenerative joint disease that affects a lot of people worldwide. Current treatment for OA mainly focuses on halting or slowing down the disease progress and to improve the patient's quality of life and functionality. Autologous chondrocyte implantation (ACI) is a new treatment modality with the potential to promote regeneration of worn cartilage. Traditionally, foetal bovine serum (FBS) is used to expand the chondrocytes. However, the use of FBS is not ideal for the expansion of cells mean for clinical applications as it possesses the risk of animal pathogen transmission and animal protein transfer to host. Human platelet lysate (HPL) appears to be a suitable alternative to FBS as it is rich in biological factors that enhance cell proliferation. Thus far, HPL has been found to be superior in promoting chondrocyte proliferation compared to FBS. However, both HPL and FBS cannot prevent chondrocyte dedifferentiation. Discrepant results have been reported for the maintenance of chondrocyte redifferentiation potential by HPL. These differences are likely due to the diversity in the HPL preparation methods. In the future, more studies on HPL need to be performed to develop a standardized technique which is capable of producing HPL that can maintain the chondrocyte redifferentiation potential reproducibly. This review discusses the in vitro expansion of chondrocytes with FBS and HPL, focusing on its capability to promote the proliferation and maintain the chondrogenic characteristics of chondrocytes.
    Matched MeSH terms: Transplantation, Autologous/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links