Deoxynivalenol (DON), a cosmopolitan mycotoxin found in agricultural commodities causes serious health maladies to human and animals when accidently consumed even at a low quantity. It necessitates selective and sensitive devices to analyse DON as the conventional methods are complex and time-consuming. This study is focused on developing a selective biosensing system using iron nanoflorets graphene nickel (INFGN) as the transducer and a specific aptamer as the biorecognition element. 3D-graphene is incorporated using a low-pressure chemical vapour deposition followed by the decoration of iron nanoflorets using electrochemical deposition. INFGN enables a feasible bio-capturing due to its large surface area. The X-ray photoelectron spectroscopy analysis confirms the presence of the hydroxyl groups on the INFGN surface, which acts as the linker. Clear Fourier-transform infrared peak shifts affirm the changes with surface chemical modification and biomolecular assembly. The limit of detection attained is 2.11 pg mL-1 and displays high stability whereby it retains 30.65% of activity after 48 h. The designed INFGN demonstrates remarkable discrimination of DON against similar mycotoxins (zearalenone and ochratoxin A). Overall, the high-performance biosensor shown here is an excellent, simple and cost-effective alternative for detecting DON in food and feed samples.
T-2 toxin, A trichothecenes mycotoxin, is immunotoxic to animals and humans. Although it is highly cardiotoxic, the pathogenesis of cardiomyopathy caused by T-2 toxin is not entirely clear. Hence, in our research, cardiomyopathy was induced by a single injection of T-2 mycotoxin (0.23 mg/kg s.c., 1 LD50.) to Wistar rats. The cardiac tissue was carefully examinated by using basic histopathology, semiquantitative (tissue grading score scales) and imaging (a total number of mast cells - MCs) analyses on days 1, 7, 14, 21, 28 and 60 of the study. The most intensive myocardial alterations (cardiac damage score, CDS = 4.20-4.40), irregular glycogen distribution (glycogen distribution score, GDS = 4.07-4.17), haemorrhagic foci (vascular damage score, VDS = 4.57-4.90), diffuse accumulation and degranulation of MCs were observed on day 28 and 60 after treatment (p
The secondary metabolites produced by fungi known as mycotoxins, are capable of causing mycotoxicosis (diseases and death) in human and animals. Contamination of feedstuffs as well as food commodities by fungi occurs frequently in a natural manner and is accompanied by the presence of mycotoxins. The occurrence of mycotoxins' contamination is further stimulated by the on-going global warming as reflected in some findings. This review comprehensively discussed the role of mycotoxins (trichothecenes, zearalenone, fumonisins, ochratoxins, and aflatoxins) toward gut health and gut microbiota. Certainly, mycotoxins cause perturbation in the gut, particularly in the intestinal epithelial. Recent insights have generated an entirely new perspective where there is a bi-directional relationship exists between mycotoxins and gut microbiota, thus suggesting that our gut microbiota might be involved in the development of mycotoxicosis. The bacteria-xenobiotic interplay for the host is highlighted in this review article. It is now well established that a healthy gut microbiota is largely responsible for the overall health of the host. Findings revealed that the gut microbiota is capable of eliminating mycotoxin from the host naturally, provided that the host is healthy with a balance gut microbiota. Moreover, mycotoxins have been demonstrated for modulation of gut microbiota composition, and such alteration in gut microbiota can be observed up to species level in some of the studies. Most, if not all, of the reported effects of mycotoxins, are negative in terms of intestinal health, where beneficial bacteria are eliminated accompanied by an increase of the gut pathogen. The interactions between gut microbiota and mycotoxins have a significant role in the development of mycotoxicosis, particularly hepatocellular carcinoma. Such knowledge potentially drives the development of novel and innovative strategies for the prevention and therapy of mycotoxin contamination and mycotoxicosis.
Adsorption plays an important role in the removal of mycotoxins from feedstuffs. The main objective of this study was to investigate the efficacy of using magnetic graphene oxide nanocomposites (MGO) as an adsorbent for the reduction of Fusarium mycotoxins in naturally contaminated palm kernel cake (PKC). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to assess the mycotoxins in animal feed. Target mycotoxins included the zearalenone (ZEA), the fumonisins (FB1 and FB2) and trichothecenes (deoxynivalenol (DON), HT-2 and T-2 toxin). Response surface methodology (RSM) was applied to investigate the effects of time (3-7 h), temperature (30-50 °C) and pH (3-7) on the reduction. The response surface models with (R2 = 0.94-0.99) were significantly fitted to predict mycotoxins in contaminated PKC. Furthermore, the method ensured a satisfactory adjustment of the polynomial regression models with the experimental data except for fumonisin B1 and B2, which decrease the adsorption of magnetic graphene oxide (MGO). The optimum reduction was performed at pH 6.2 for 5.2 h at of 40.6 °C. Under these optimum conditions, reduced levels of 69.57, 67.28, 57.40 and 37.17%, were achieved for DON, ZEA, HT-2, and T-2, respectively.
Fungi are distributed worldwide and can be found in various foods and feedstuffs from almost every part of the world. Mycotoxins are secondary metabolites produced by some fungal species and may impose food safety risks to human health. Among all mycotoxins, aflatoxins (AFs), ochratoxin A (OTA), trichothecenes, deoxynivalenol (DON and T-2 toxin), zearalenone (ZEN), and fumonisins (FMN) have received much attention due to high frequency and severe health effects in humans and animals. Malaysia has heavy rainfall throughout the year, high temperatures (28 to 31 °C), and high relative humidity (70% to 80% during wet seasons). Stored crops under such conditions can easily be contaminated by mycotoxin-producing fungi. The most important mycotoxins in Malaysian foods are AFs, OTA, DON, ZEN, and FMN that can be found in peanuts, cereal grains, cocoa beans, and spices. AFs have been reported to occur in several cereal grains, feeds, nuts, and nut products consumed in Malaysia. Spices, oilseeds, milk, eggs, and herbal medicines have been reported to be contaminated with AFs (lower than the Malaysian acceptable level of 35 ng/g for total AFs). OTA, a possible human carcinogen, was reported in cereal grains, nuts, and spices in Malaysian market. ZEN was detected in Malaysian rice, oat, barley, maize meal, and wheat at different levels. DON contamination, although at low levels, was reported in rice, maize, barley, oat, wheat, and wheat-based products in Malaysia. FMN was reported in feed and some cereal grains consumed in Malaysia. Since some food commodities are more susceptible than others to fungal growth and mycotoxin contamination, more stringent prevention and control methods are required.