The double differential cross sections of the Drell-Yan lepton pair (ℓ+ℓ-, dielectron or dimuon) production are measured as functions of the invariant mass mℓℓ, transverse momentum pT(ℓℓ), and φη∗. The φη∗ observable, derived from angular measurements of the leptons and highly correlated with pT(ℓℓ), is used to probe the low-pT(ℓℓ) region in a complementary way. Dilepton masses up to 1TeV are investigated. Additionally, a measurement is performed requiring at least one jet in the final state. To benefit from partial cancellation of the systematic uncertainty, the ratios of the differential cross sections for various mℓℓ ranges to those in the Z mass peak interval are presented. The collected data correspond to an integrated luminosity of 36.3fb-1 of proton-proton collisions recorded with the CMS detector at the LHC at a centre-of-mass energy of 13TeV. Measurements are compared with predictions based on perturbative quantum chromodynamics, including soft-gluon resummation.
The mass of the top quark is measured using a sample of t t ¯ events collected by the CMS detector using proton-proton collisions at s = 13 TeV at the CERN LHC. Events are selected with one isolated muon or electron and at least four jets from data corresponding to an integrated luminosity of 35.9 fb - 1 . For each event the mass is reconstructed from a kinematic fit of the decay products to a t t ¯ hypothesis. Using the ideogram method, the top quark mass is determined simultaneously with an overall jet energy scale factor (JSF), constrained by the mass of the W boson in q q ¯ ' decays. The measurement is calibrated on samples simulated at next-to-leading order matched to a leading-order parton shower. The top quark mass is found to be 172.25 ± 0.08 (stat+JSF) ± 0.62 (syst) GeV . The dependence of this result on the kinematic properties of the event is studied and compared to predictions of different models of t t ¯ production, and no indications of a bias in the measurements are observed.
The exclusive photoproduction of Υ ( nS ) meson states from protons, γ p → Υ ( nS ) p (with n = 1 , 2 , 3 ), is studied in ultraperipheral p Pb collisions at a centre-of-mass energy per nucleon pair of s NN = 5.02 TeV . The measurement is performed using the Υ ( nS ) → μ + μ - decay mode, with data collected by the CMS experiment corresponding to an integrated luminosity of 32.6 nb - 1 . Differential cross sections as functions of the Υ ( nS ) transverse momentum squared p T 2 , and rapidity y, are presented. The Υ ( 1 S ) photoproduction cross section is extracted in the rapidity range | y | < 2.2 , which corresponds to photon-proton centre-of-mass energies in the range 91 < W γ p < 826 GeV . The data are compared to theoretical predictions based on perturbative quantum chromodynamics and to previous measurements.
Collinear (small-angle) and large-angle, as well as soft and hard radiations are investigated in three-jet and Z + two-jet events collected in proton-proton collisions at the LHC. The normalized production cross sections are measured as a function of the ratio of transverse momenta of two jets and their angular separation. The measurements in the three-jet and Z + two-jet events are based on data collected at a center-of-mass energy of 8 TeV , corresponding to an integrated luminosity of 19.8 fb - 1 . The Z + two-jet events are reconstructed in the dimuon decay channel of the Z boson. The three-jet measurement is extended to include s = 13 TeV data corresponding to an integrated luminosity of 2.3 fb - 1 . The results are compared to predictions from event generators that include parton showers, multiple parton interactions, and hadronization. The collinear and soft regions are in general well described by parton showers, whereas the regions of large angular separation are often best described by calculations using higher-order matrix elements.
The rate for Higgs ( H ) bosons production in association with either one ( t H ) or two ( t t ¯ H ) top quarks is measured in final states containing multiple electrons, muons, or tau leptons decaying to hadrons and a neutrino, using proton-proton collisions recorded at a center-of-mass energy of 13 TeV by the CMS experiment. The analyzed data correspond to an integrated luminosity of 137 fb - 1 . The analysis is aimed at events that contain H → W W , H → τ τ , or H → Z Z decays and each of the top quark(s) decays either to lepton+jets or all-jet channels. Sensitivity to signal is maximized by including ten signatures in the analysis, depending on the lepton multiplicity. The separation among t H , t t ¯ H , and the backgrounds is enhanced through machine-learning techniques and matrix-element methods. The measured production rates for the t t ¯ H and t H signals correspond to 0.92 ± 0.19 (stat) - 0.13 + 0.17 (syst) and 5.7 ± 2.7 (stat) ± 3.0 (syst) of their respective standard model (SM) expectations. The corresponding observed (expected) significance amounts to 4.7 (5.2) standard deviations for t t ¯ H , and to 1.4 (0.3) for t H production. Assuming that the Higgs boson coupling to the tau lepton is equal in strength to its expectation in the SM, the coupling y t of the Higgs boson to the top quark divided by its SM expectation, κ t = y t / y t SM , is constrained to be within - 0.9 < κ t < - 0.7 or 0.7 < κ t < 1.1 , at 95% confidence level. This result is the most sensitive measurement of the t t ¯ H production rate to date.
We describe a method to obtain point and dispersion estimates for the energies of jets arising from b quarks produced in proton-proton collisions at an energy of s = 13 TeV at the CERN LHC. The algorithm is trained on a large sample of simulated b jets and validated on data recorded by the CMS detector in 2017 corresponding to an integrated luminosity of 41 fb - 1 . A multivariate regression algorithm based on a deep feed-forward neural network employs jet composition and shape information, and the properties of reconstructed secondary vertices associated with the jet. The results of the algorithm are used to improve the sensitivity of analyses that make use of b jets in the final state, such as the observation of Higgs boson decay to b b ¯ .