Displaying publications 181 - 200 of 370 in total

Abstract:
Sort:
  1. Chan KG, Priya K, Chang CY, Abdul Rahman AY, Tee KK, Yin WF
    PeerJ, 2016;4:e2223.
    PMID: 27547539 DOI: 10.7717/peerj.2223
    Functional genomics research can give us valuable insights into bacterial gene function. RNA Sequencing (RNA-seq) can generate information on transcript abundance in bacteria following abiotic stress treatments. In this study, we used the RNA-seq technique to study the transcriptomes of the opportunistic nosocomial pathogen Pseudomonas aeruginosa PAO1 following heat shock. Samples were grown at both the human body temperature (37 °C) and an arbitrarily-selected temperature of 46 °C. In this work using RNA-seq, we identified 133 genes that are differentially expressed at 46 °C compared to the human body temperature. Our work identifies some key P. aeruginosa PAO1 genes whose products have importance in both environmental adaptation as well as in vivo infection in febrile hosts. More importantly, our transcriptomic results show that many genes are only expressed when subjected to heat shock. Because the RNA-seq can generate high throughput gene expression profiles, our work reveals many unanticipated genes with further work to be done exploring such genes products.
  2. Tan HL, Chan KG, Pusparajah P, Saokaew S, Duangjai A, Lee LH, et al.
    Front Pharmacol, 2016;7:191.
    PMID: 27445824 DOI: 10.3389/fphar.2016.00191
    Epimedium (family Berberidaceae), commonly known as Horny Goat Weed or Yin Yang Huo, is commonly used as a tonic, aphrodisiac, anti-rheumatic and anti-cancer agent in traditional herbal formulations in Asian countries such as China, Japan, and Korea. The major bioactive compounds present within this plant include icariin, icaritin and icariside II. Although it is best known for its aphrodisiac properties, scientific and pharmacological studies suggest it possesses broad therapeutic capabilities, especially for enhancing reproductive function and osteoprotective, neuroprotective, cardioprotective, anti-inflammatory and immunoprotective effects. In recent years, there has been great interest in scientific investigation of the purported anti-cancer properties of icariin and its derivatives. Data from in vitro and in vivo studies suggests these compounds demonstrate anti-cancer activity against a wide range of cancer cells which occurs through various mechanisms such as apoptosis, cell cycle modulation, anti-angiogenesis, anti-metastasis and immunomodulation. Of note, they are efficient at targeting cancer stem cells and drug-resistant cancer cells. These are highly desirable properties to be emulated in the development of novel anti-cancer drugs in combatting the emergence of drug resistance and overcoming the limited efficacy of current standard treatment. This review aims to summarize the anti-cancer mechanisms of icariin and its derivatives with reference to the published literature. The currently utilized applications of icariin and its derivatives in cancer treatment are explored with reference to existing patents. Based on the data compiled, icariin and its derivatives are shown to be compounds with tremendous potential for the development of new anti-cancer drugs.
  3. Chan XY, Chen JW, Adrian TG, Hong KW, Chang CY, Yin WF, et al.
    Genome Announc, 2017 Mar 30;5(13).
    PMID: 28360153 DOI: 10.1128/genomeA.00067-17
    Bacillus sp. is a Gram-positive bacterium that is commonly found in seawater. In this study, the genome of marine Bacillus sp. strain G3(2015) was sequenced using MiSeq. The fosfomycin resistant gene fosB was identified upon bacterial genome annotation.
  4. Selvaratnam C, Thevarajoo S, Goh KM, Chan KG, Chong CS
    Int J Syst Evol Microbiol, 2016 Dec;66(12):5537-5543.
    PMID: 28077207 DOI: 10.1099/ijsem.0.001553
    The genus Roseivirga currently includes five species: Roseivirga ehrenbergii, R. echinicomitans, R. spongicola, R. marina and R. maritima. Marinicola seohaensis SW-152T was renamed as Roseivirgaseohaensis SW-152T and then reclassified again as a later heterotypic synonym of R. ehrenbergii KMM 6017T. In this study, based on average nucleotide identity and digital DNA-DNA hybridization values obtained from in silico methods, together with fatty acid analyses and biochemical tests, we propose to reclassify R. ehrenbergii SW-152 as Roseivirga seohaensis comb. nov. (type strain SW-152T=KCTC 1231T=JCM 12600T). In this work, a Gram-negative, rod-shaped, aerobic and pink-pigmented strain designated as D-25T was isolated from seawater (Desaru Beach, Johor, Malaysia). The 16S rRNA gene analysis revealed that strain D-25T was related to the genus Roseivirga. Strain D-25T was found most closely related to R. seohaensis SW-152T based on average nucleotide identity and digital DNA-DNA hybridization values, phenotypic and chemotaxonomic analyses, indicating that these strains belong to the same species. Thus, it is proposed to split the species R.oseivirga seohaensis into two novel subspecies, Roseivirga seohaensissubsp. seohaensis subsp. nov. (type strain SW-152T=KCTC 12312T=JCM 12600T) and Roseivirga seohaensissubsp. aquiponti subsp. nov. (type strain D-25T=KCTC 42709T=DSM 101709T) and to emend the description of the genus Roseivirga.
  5. Letchumanan V, Chan KG, Khan TM, Bukhari SI, Ab Mutalib NS, Goh BH, et al.
    Front Microbiol, 2017;8:728.
    PMID: 28484445 DOI: 10.3389/fmicb.2017.00728
    Bacteria must develop resistance to various inhospitable conditions in order to survive in the human gastrointestinal tract. Bile, which is secreted by the liver, and plays an important role in food digestion also has antimicrobial properties and is able to disrupt cellular homeostasis. Paradoxically, although bile is one of the guts defenses, many studies have reported that bacteria such as Vibrio parahaemolyticus can sense bile and use its presence as an environmental cue to upregulate virulence genes during infection. This article aims to discuss how bile is detected by V. parahaemolyticus and its role in regulating type III secretion system 2 leading to human infection. This bile-bacteria interaction pathway gives us a clearer understanding of the biochemical and structural analysis of the bacterial receptors involved in mediating a response to bile salts which appear to be a significant environmental cue during initiation of an infection.
  6. Bukhsh A, Khan TM, Lee SWH, Lee LH, Chan KG, Goh BH
    Front Pharmacol, 2018;9:339.
    PMID: 29692730 DOI: 10.3389/fphar.2018.00339
    Background: Comparative efficacy of different pharmacist based interventions on glycemic control of type 2 diabetes patients is unclear. This review aimed to evaluate and compare the efficacy of different pharmacist based interventions on clinical outcomes of type 2 diabetes patients. Methods: A systematic search was conducted across five databases from date of database inception to September 2017. All randomized clinical trials evaluating the efficacy of pharmacist based interventions on type 2 diabetes patients were included for network meta-analysis (NMA). The protocol is available with PROSPERO (CRD42017078854). Results: A total of 43 studies, involving 6259 type 2 diabetes patients, were included. NMA demonstrated that all interventions significantly lowered glycosylated hemoglobin (HbA1c) levels compared to usual care, but there was no statistical evidence from this study that one intervention was significantly better than the other for reducing HbA1c levels. Pharmacist based diabetes education plus pharmaceutical care showed maximum efficacy for reducing HbA1c levels [-0.86, 95% CI -0.983, -0.727; p < 0.001]. Pharmacist based diabetes education plus pharmaceutical care was observed to be statistically significant in lowering levels of systolic blood pressure [-4.94; 95%CI -8.65, -1.23] and triglycerides levels [-0.26, 95%CI -0.51, -0.01], as compared to the interventions which involved diabetes education by pharmacist, and for body mass index (BMI) [-0.57; 95%CI -1.25, -0.12] in comparison to diabetes education by health care team involving pharmacist as member. Conclusion: The findings of this review demonstrate that all interventions had a significantly positive effect on HbA1c, but there was no statistical evidence from this study that one intervention was significantly better than the other for achieving glycemic control.Pharmacist based diabetes education plus pharmaceutical care showed maximum efficacy on HbA1c and rest of the clinical outcomes.
  7. Liew KJ, Lim L, Woo HY, Chan KG, Shamsir MS, Goh KM
    Int J Biol Macromol, 2018 Aug;115:1094-1102.
    PMID: 29723622 DOI: 10.1016/j.ijbiomac.2018.04.156
    Beta-glucosidase (BGL) is an important industrial enzyme for food, waste and biofuel processing. Jeotgalibacillus is an understudied halophilic genus, and no beta-glucosidase from this genus has been reported. A novel beta-glucosidase gene (1344 bp) from J. malaysiensis DSM 28777T was cloned and expressed in E. coli. The recombinant protein, referred to as BglD5, consists of a total 447 amino acids. BglD5 purified using a Ni-NTA column has an apparent molecular mass of 52 kDa. It achieved the highest activity at pH 7 and 65 °C. The activity and stability were increased when CaCl2 was supplemented to the enzyme. The enzyme efficiently hydrolyzed salicin and (1 → 4)-beta-glycosidic linkages such as in cellobiose, cellotriose, cellotetraose, cellopentose, and cellohexanose. Similar to many BGLs, BglD5 was not active towards polysaccharides such as Avicel, carboxymethyl cellulose, Sigmacell cellulose 101, alpha-cellulose and xylan. When BglD5 blended with Cellic® Ctec2, the total sugars saccharified from oil palm empty fruit bunches (OPEFB) was enhanced by 4.5%. Based on sequence signatures and tree analyses, BglD5 belongs to the Glycoside Hydrolase family 1. This enzyme is a novel beta-glucosidase attributable to its relatively low sequence similarity with currently known beta-glucosidases, where the closest characterized enzyme is the DT-Bgl from Anoxybacillus sp. DT3-1.
  8. Tan LT, Chan KG, Chan CK, Khan TM, Lee LH, Goh BH
    Biomed Res Int, 2018;2018:4823126.
    PMID: 29805975 DOI: 10.1155/2018/4823126
    Mangrove derived microorganisms constitute a rich bioresource for bioprospecting of bioactive natural products. This study explored the antioxidant potentials of Streptomyces bacteria derived from mangrove soil. Based on 16S rRNA phylogenetic analysis, strain MUM292 was identified as the genus Streptomyces. Strain MUM292 showed the highest 16S rRNA gene sequence similarity of 99.54% with S. griseoruber NBRC12873T. Furthermore, strain MUM292 was also characterized and showed phenotypic characteristics consistent with Streptomyces bacteria. Fermentation and extraction were performed to obtain the MUM292 extract containing the secondary metabolites of strain MUM292. The extract displayed promising antioxidant activities, including DPPH, ABTS, and superoxide radical scavenging and also metal-chelating activities. The process of lipid peroxidation in lipid-rich product was also retarded by MUM292 extract and resulted in reduced MDA production. The potential bioactive constituents of MUM292 extract were investigated using GC-MS and preliminary detection showed the presence of pyrazine, pyrrole, cyclic dipeptides, and phenolic compound in MUM292 extract. This work demonstrates that Streptomyces MUM292 can be a potential antioxidant resource for food and pharmaceutical industries.
  9. Kahar UM, Chan KG, Sani MH, Mohd Noh NI, Goh KM
    Int J Biol Macromol, 2017 Nov;104(Pt A):322-332.
    PMID: 28610926 DOI: 10.1016/j.ijbiomac.2017.06.054
    Type I pullulanase from Anoxybacillus sp. SK3-4 (PulASK) is an unusual debranching enzyme that specifically hydrolyzes starch α-1,6 linkages at long branches producing oligosaccharides (≥G8), but is nonreactive against short branches; thus, incapable of producing reducing sugars (G1-G7). We report on the effects of both single and co-immobilization of PulASK on product specificity. PulASK was purified and immobilized through covalent attachment to three epoxides (ReliZyme EP403/M, Immobead IB-150P, and Immobead IB-150A) and an amino-epoxide (ReliZyme HFA403/M) activated supports. Following immobilization, all PulASK derivatives were active on both short and long branches in starch producing reducing sugars (predominantly maltotriose) and oligosaccharides (≥G8), respectively, a feature that is absent in the free enzyme. This study also demonstrated that co-immobilization of PulASK and α-amylase from Anoxybacillus sp. SK3-4 (TASKA) on ReliZyme HFA403/M significantly changed the product specificity compared to the free enzymes alone or individually immobilized enzymes. In conclusion, individual or co-immobilization caused changes in the product specificity, presumably due to changes in the enzyme binding pocket caused by the influence of carrier surface properties (hydrophobic or hydrophilic) and the lengths of the spacer arms.
  10. Chua KO, Song SL, Yong HS, See-Too WS, Yin WF, Chan KG
    Sci Rep, 2018 Jul 17;8(1):10777.
    PMID: 30018403 DOI: 10.1038/s41598-018-29159-2
    The weaver ant Oecophylla smaragdina is an aggressive predator of other arthropods and has been employed as a biological control agent against many insect pests in plantations. Despite playing important roles in pest management, information about the microbiota of O. smaragdina is limited. In this work, a number of O. smaragdina colonies (n = 12) from Malaysia had been studied on their microbiome profile using Illumina 16S rRNA gene amplicon sequencing. We characterized the core microbiota associated with these O. smaragdina and investigated variation between colonies from different environments. Across all 12 samples, 97.8% of the sequences were assigned to eight bacterial families and most communities were dominated by families Acetobacteraceae and Lactobacillaceae. Comparison among colonies revealed predominance of Acetobacteraceae in O. smaragdina from forest areas but reduced abundance was observed in colonies from urban areas. In addition, our findings also revealed distinctive community composition in O. smaragdina showing little taxonomic overlap with previously reported ant microbiota. In summary, our work provides information regarding microbiome of O. smaragdina which is essential for establishing healthy colonies. This study also forms the basis for further study on microbiome of O. smaragdina from other regions.
  11. Priya K, Sulaiman J, How KY, Yin WF, Chan KG
    Arch Microbiol, 2018 Sep;200(7):1135-1142.
    PMID: 29796703 DOI: 10.1007/s00203-018-1526-y
    Quorum sensing (QS) is a term used to describe cell-to-cell communication that enables bacteria to orchestrate group behaviours according to density of bacterial cells. In Gram-negative bacteria, this signalling system is widely known to regulate a variety of different phenotypes such as antibiotic production and biofilm formation. In this study, we report the production of N-acyl homoserine lactones produced by Chromobacterium haemolyticum strain KM2, a bacterium isolated from a river water of a reserved tropical national park. Preliminary screening of QS activity using biosensor reporter assays indicated that C. haemolyticum strain KM2 produces both short- and long-chain AHLs. Analysis with high-resolution liquid chromatography-mass spectrometry (LC-MS/MS) analysis revealed the production of three AHLs by strain KM2: N-octanoyl-L-homoserine lactone (C8-HSL), N-dodecanoyl-L-homoserine lactone (C12-HSL), and N-3-oxo-dodecanoyl-L-homoserine lactone (OC12-HSL). This bacterial isolate also exhibited strong β-haemolytic activity. To the best of our knowledge, this is the first documentation of QS activity and multiple AHLs production by C. haemolyticum strain KM2.
  12. Khayi S, Cigna J, Chong TM, Quêtu-Laurent A, Chan KG, Hélias V, et al.
    Int J Syst Evol Microbiol, 2016 Dec;66(12):5379-5383.
    PMID: 27692046 DOI: 10.1099/ijsem.0.001524
    Pectobacterium wasabiae was originally isolated from Japanese horseradish (Eutrema wasabi), but recently some Pectobacterium isolates collected from potato plants and tubers displaying blackleg and soft rot symptoms were also assigned to P. wasabiae. Here, combining genomic and phenotypical data, we re-evaluated their taxonomic position. PacBio and Illumina technologies were used to complete the genome sequences of P. wasabiae CFBP 3304T and RNS 08-42-1A. Multi-locus sequence analysis showed that the P. wasabiae strains RNS 08-42-1A, SCC3193, CFIA1002 and WPP163, which were collected from potato plant environment, constituted a separate clade from the original Japanese horseradish P. wasabiae. The taxonomic position of these strains was also supported by calculation of the in-silico DNA-DNA hybridization, genome average nucleotide indentity, alignment fraction and average nucleotide indentity values. In addition, they were phenotypically distinguished from P. wasabiae strains by producing acids from (+)-raffinose, α-d(+)-α-lactose, d(+)-galactose and (+)-melibiose but not from methyl α-d-glycopyranoside, (+)-maltose or malonic acid. The name Pectobacterium parmentieri sp. nov. is proposed for this taxon; the type strain is RNS 08-42-1AT (=CFBP 8475T=LMG 29774T).
  13. Tan KH, How KY, Tan JY, Yin WF, Chan KG
    Front Microbiol, 2017;8:72.
    PMID: 28197135 DOI: 10.3389/fmicb.2017.00072
    The process of intercellular communication among bacteria, termed quorum sensing (QS), is mediated by small diffusible molecules known as the autoinducers. QS allows the population to react to the change of cell density in unison, in processes such as biofilm formation, plasmid conjugation, virulence, motility and root nodulation. In Gram-negative proteobacteria, N-acyl homoserine lactone (AHL) is the common "language" to coordinate gene expression. This signaling molecule is usually synthesized by LuxI-type proteins. We have previously discovered that a rare bacterium, Cedecea neteri, exhibits AHL-type QS activity. With information generated from genome sequencing, we have identified the luxIR gene pair responsible for AHL-type QS and named it cneIR. In this study, we have cloned and expressed the 636 bp luxI homolog in an Escherichia coli host for further characterization. Our findings show that E. coli harboring cneI produced the same AHL profile as the wild type C. neteri, with the synthesis of AHL known as N-butyryl-homoserine lactone. This 25 kDa LuxI homolog shares high similarity with other AHL synthases from closely related species. This work is the first documentation of molecular cloning and characterization of luxI homolog from C. neteri.
  14. Bittleston LS, Wolock CJ, Yahya BE, Chan XY, Chan KG, Pierce NE, et al.
    Elife, 2018 08 28;7.
    PMID: 30152327 DOI: 10.7554/eLife.36741
    The 'pitchers' of carnivorous pitcher plants are exquisite examples of convergent evolution. An open question is whether the living communities housed in pitchers also converge in structure or function. Using samples from more than 330 field-collected pitchers of eight species of Southeast Asian Nepenthes and six species of North American Sarracenia, we demonstrate that the pitcher microcosms, or miniature ecosystems with complex communities, are strikingly similar. Compared to communities from surrounding habitats, pitcher communities house fewer species. While communities associated with the two genera contain different microbial organisms and arthropods, the species are predominantly from the same phylogenetic clades. Microbiomes from both genera are enriched in degradation pathways and have high abundances of key degradation enzymes. Moreover, in a manipulative field experiment, Nepenthes pitchers placed in a North American bog assembled Sarracenia-like communities. An understanding of the convergent interactions in pitcher microcosms facilitates identification of selective pressures shaping the communities.
  15. Kemung HM, Tan LT, Khan TM, Chan KG, Pusparajah P, Goh BH, et al.
    Front Microbiol, 2018;9:2221.
    PMID: 30319563 DOI: 10.3389/fmicb.2018.02221
    Methicillin-resistant Staphylococcus aureus (MRSA) pose a significant health threat as they tend to cause severe infections in vulnerable populations and are difficult to treat due to a limited range of effective antibiotics and also their ability to form biofilm. These organisms were once limited to hospital acquired infections but are now widely present in the community and even in animals. Furthermore, these organisms are constantly evolving to develop resistance to more antibiotics. This results in a need for new clinically useful antibiotics and one potential source are the Streptomyces which have already been the source of several anti-MRSA drugs including vancomycin. There remain large numbers of Streptomyces potentially undiscovered in underexplored regions such as mangrove, deserts, marine, and freshwater environments as well as endophytes. Organisms from these regions also face significant challenges to survival which often result in the production of novel bioactive compounds, several of which have already shown promise in drug development. We review the various mechanisms of antibiotic resistance in MRSA and all the known compounds isolated from Streptomyces with anti-MRSA activity with a focus on those from underexplored regions. The isolation of the full array of compounds Streptomyces are potentially capable of producing in the laboratory has proven a challenge, we also review techniques that have been used to overcome this obstacle including genetic cluster analysis. Additionally, we review the in vivo work done thus far with promising compounds of Streptomyces origin as well as the animal models that could be used for this work.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links