The 17 α-ethinylestradiol (EE2) adsorption from aqueous solution was examined using a novel adsorbent made from rice husk powder coated with CuO nanoparticles (CRH). Advanced analyses of FTIR, XRD, SEM, and EDSwere used to identify the classification parameters of a CRH-like surface morphology, configuration, and functional groups. The rice husk was coated with CuO nanoparticles, allowing it to create large surface area materials with significantly improved textural qualities with regard to functional use and adsorption performance, according to a detailed characterization of the synthesized materials. The adsorption process was applied successfully with elimination effectiveness of 100% which can be kept up to 61.3%. The parameters of adsorption were affecting the adsorption process significantly. Thermodynamic data stated that the process of adsorption was endothermic, spontaneous, chemisorption and the molecules of EE2 show affinity with the CRH. It was discovered that the adsorption process controlled by a pseudo-second-order kinetic model demonstrates that the chemisorption process was controlling EE2 removal. The Sips model is regarded as optimal for representing this practice, exhibiting a significantly high determination coefficient of 0.948. This coefficient implies that the adsorption mechanism indicates the occurrence of both heterogeneous and homogeneous adsorption. According to the findings, biomass can serve as a cheap, operative sorbent to remove estrogen from liquified solutions.
One of the molecular chemical markers used to identify anthropogenic inputs is linear alkylbenzenes (LABs) that cause serious impacts in the bays and coastal ecosystems. The surface sediments samples collected from the East Malaysia, including Brunei bay to estimate the LABs concentration and distribution as molecular markers of anthropogenic indicators. Gas chromatography-mass spectrometry (GC-MS) was used after purification, fractionation the hydrocarbons in the sediment samples to identify the sources of LABs. The analysis of variance (ANOVA) and Pearson correlation coefficient were applied to analyze the difference between sampling stations' significance at p
Food waste has been considered a global problem due to its adverse impacts on food security, the environment, and the economy; hence needs urgent attention and action. Its generation is expected to increase as the world population grows rapidly, leading to more global waste. This study sought the impacts of the COVID-19 outbreak on the 1-week operation of selected casual dining restaurants in urban (Ampang, Kuala Lumpur) and suburban areas (Kota Bharu, Kelantan and Jasin, Melaka) of Peninsular Malaysia, as the local community adjusted to life with COVID-19. The food waste in this study was classified into three categories: preparation loss, serving loss, and customer's plate waste. Our material flow analysis revealed that the highest food loss at these locations came from preparation loss (51.37%), followed by serving loss (30.95%), and preparation loss (17.8%). Meanwhile, the total average electricity consumption and its carbon footprint for Ampang were 127 kWh and 13.87 kgCO2e, Kota Bharu 269.8 kWh and 29.47 kgCO2e, and Jasin 142.2 kWh and 15.54 kgCO2e, respectively. As for water, Ampang exhibited 22.93 m3 total average consumption and 7.91 kgCO2e greenhouse emissions from this source, Jasin consuming 17.11 m3 of water and releasing 5.88 kgCO2e of carbon footprint, while Kota Bharu emitted 20.21 kgCO2e of greenhouse gases from its 58.71 m3 water consumption. Our findings indicate a major 'food leak' at the preparation stage, from which the waste could be utilised as livestock feed, and that electricity consumption is a greater carbon emitter than water consumption, suggesting a need for improvement to the kitchen practices and equipment.
Calix[4]arene/polyurethane (C4PU) has been synthesized and characterized as an alternative adsorbent for the adsorption of methylene blue (MB) and malachite green (MG) dyes from the aqueous solution. C4PU was synthesized by reacting p-tert-butyl calix[4]arene with hexamethylene diisocyanate (HMDI) as the cross-linking agent. Different polymer ratios were synthesized, and C4PU-4 shows better adsorption than other ratios. The polymer was characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET) analysis, and point of zero charges (pHPZC). The isotherms and kinetics of the adsorption of MB and MG were studied under a range of experimental conditions, including pH, adsorbent dosage, initial dye concentration, and contact time. The adsorption was determined by the adsorption percentage of MB and MG dyes from the solution. The Langmuir isotherm model best describes the adsorption process for both dyes, and it follows a pseudo-second-order kinetic model, with the maximum adsorption capacity (qmax) of MB and MG, respectively, was found to be 1.991 mg·g-1 and 2.240 mg·g-1.
This study evaluated the adsorptive properties of deep eutectic solvent (DES)-treated palm oil mill sludge adsorbents for methylene blue removal. The adsorbents were prepared at a ratio of 1:2 at 80°C to form P1:D2@80°C, at 25°C to form P1:D2@25°C and without DES to form dry sludge (DS). The adsorbent samples were characterized for surface functional groups, textural properties and surface morphology. The values of specific area were 534, 236 and 184 m2/g, respectively. Batch adsorption of methylene blue at varying concentration, adsorbent dosage, pH, contact time and temperature was performed. The maximum adsorption capacities by Sips model were recorded as 72.07, 56.18 and 48.33 mg/g for P1:D2@80°C, P1:D2@25°C and DS, respectively. P1:D2@80°C displayed the highest rate constant (Ks = 0.0037 g/mg.min). The adsorption data were well fitted into Sips isotherm and pseudo-second-order kinetic models, suggesting that the adsorption is a physical process onto heterogeneous adsorbent surface via pore filling and electrostatic attraction. The adsorption was spontaneous, feasible and exothermic with decreased disorderliness in the solid-bulk solution interface. The DES-treated palm oil mill sludge adsorbent is a promising alternative adsorbent for dye removal from wastewater.
Digital image processing has witnessed a significant transformation, owing to the adoption of deep learning (DL) algorithms, which have proven to be vastly superior to conventional methods for crop detection. These DL algorithms have recently found successful applications across various domains, translating input data, such as images of afflicted plants, into valuable insights, like the identification of specific crop diseases. This innovation has spurred the development of cutting-edge techniques for early detection and diagnosis of crop diseases, leveraging tools such as convolutional neural networks (CNN), K-nearest neighbour (KNN), support vector machines (SVM), and artificial neural networks (ANN). This paper offers an all-encompassing exploration of the contemporary literature on methods for diagnosing, categorizing, and gauging the severity of crop diseases. The review examines the performance analysis of the latest machine learning (ML) and DL techniques outlined in these studies. It also scrutinizes the methodologies and datasets and outlines the prevalent recommendations and identified gaps within different research investigations. As a conclusion, the review offers insights into potential solutions and outlines the direction for future research in this field. The review underscores that while most studies have concentrated on traditional ML algorithms and CNN, there has been a noticeable dearth of focus on emerging DL algorithms like capsule neural networks and vision transformers. Furthermore, it sheds light on the fact that several datasets employed for training and evaluating DL models have been tailored to suit specific crop types, emphasizing the pressing need for a comprehensive and expansive image dataset encompassing a wider array of crop varieties. Moreover, the survey draws attention to the prevailing trend where the majority of research endeavours have concentrated on individual plant diseases, ML, or DL algorithms. In light of this, it advocates for the development of a unified framework that harnesses an ensemble of ML and DL algorithms to address the complexities of multiple plant diseases effectively.
The Jakarta Bay is the estuary for thirteen rivers that flow through densely populated and industrialized upstream regions. This condition has the potential to pollute the Jakarta Bay with microplastics that are transported from the upstream river. Meanwhile, people, particularly fishermen, continue to use Jakarta Bay for fishing and aquaculture. This study examined microplastics (MP) abundance in the whole tissues of green mussels (Perna viridis) grown in Jakarta Bay, Indonesia, and their health risks. MP was identified in all 120 green mussels, with fiber > film > fragment being the most common kinds. The abundance of fiber was 19 items/g of tissue, whereas the abundances of fragments and film were 14.5 items/g and 15 item/g, respectively. Fourier transform infrared spectroscopy tests on MP from the tissues of green mussels showed that there were 12 different types of MP polymers. The estimated amount of MP that humans consume each year varied from 29,120 MP items/year to 218,400 MP items/year for different age groups. Based on the total mean number of MP found in the tissues of green mussels and the amount of shellfish consumed per person in Indonesia, it was estimated that people ate 775,180 MP through shellfish each year.
Jurong Formation underlies part of Southern Johor Bahru which comprises well cemented and consolidated volcanic-sedimentary rocks. The study aims to assess quality and hydrogeochemistry of rock aquifer in Jurong Formation at Southern Johor Bahru which is mainly overlain by rhyolitic tuff. It also evaluates the differences in quality and hydrogeochemistry of rhyolitic tuff aquifer found in source and floodplain zones of South-West Johor Rivers Basin. In this study, a total of nine samples from four wells, namely TW1-TW4, were collected at foothills of Gunung Pulai (TW1) and Iskandar Puteri (TW2-TW4) in Southern Johor Bahru. The samples were examined for physiochemical parameters. The groundwater in the study area is fresh and non-saline with hardness of soft to hard. The pH of groundwater in source zone is significantly higher than in floodplain zone. Meanwhile, the hardness of groundwater in source zone is significantly lower than in other deep wells in floodplain zone as more calcite mineral is present. The concentration of manganese, iron and zinc is lower at source zone than floodplain zone. Three facies of water types were encountered during the study such as CaNaHCO3 in TW2, CaHCO3 in TW1 and TW3 and CaCl2 in TW4. The deep wells in floodplain zone are susceptible to saline intrusion. Finally, the groundwater quality in the study area is found to control by rock weathering especially silicates and carbonates, rainfall and proximity to seawater. This suggests the major control on groundwater chemistry is due to leaching of volcanic rocks and dissolution on calcite infillings. In conclusion, the groundwater is clean and safe in general although pH value is slightly acidic closer to straits and magnesium's presence in higher concentration at TW2.
Fig leaf, an environmentally friendly byproduct of fruit plants, has been used for the first time to treat of methylene blue dye. The fig leaf-activated carbon (FLAC-3) was prepared successfully and used for the adsorption of methylene blue dye (MB). The adsorbent was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and the Brunauer-Emmett-Teller (BET). In the present study, initial concentrations, contact time, temperatures, pH solution, FLAC-3 dose, volume solution, and activation agent were investigated. However, the initial concentration of MB was investigated at different concentrations of 20, 40, 80, 120, and 200 mg/L. pH solution was examined at these values: pH3, pH7, pH8, and pH11. Moreover, adsorption temperatures of 20, 30, 40, and 50 °C were considered to investigate how the FLAC-3 works on MB dye removal. The adsorption capacity of FLAC-3 was determined to be 24.75 mg/g for 0.08 g and 41 mg/g for 0.02 g. The adsorption process has followed the Langmuir isotherm model (R2 = 0.9841), where the adsorption created a monolayer covering the surface of the adsorbent. Additionally, it was discovered that the maximum adsorption capacity (Qm) was 41.7 mg/g and the Langmuir affinity constant (KL) was 0.37 L/mg. The FLAC-3, as low-cost adsorbents for methylene blue dye, has shown good cationic dye adsorption performance.
Bangladesh is a rapidly developing country, which is vulnerable to various types of pollution due to the large-scale industrial and associated human activities that might potentially affect the locally harvested foodstuffs. Therefore, the transfer factor is an essential tool to assess the safety of foodstuffs due to the presence of natural radioactivity in environmental matrix and/or strata. This is a first study of its kind conducted in a well-known region for mango farming in Bangladesh, measuring the uptake of naturally occurring radioactive materials (NORMs) by grass and mango from soil to assess the ingestion doses to humans. The HPGe gamma-ray detector was used to determine the concentrations of NORMs in samples of soil (20), grass (10), and mango (10), which were then used to calculate the transfer factors of soil to grass and soil to mango. Average activity concentrations of 226Ra, 232Th, and 40K in associated soil samples (47.27 ± 4.10, 64.49 ± 4.32, 421.60 ± 28.85) of mango and 226Ra and 232Th in associated soil samples (45.07 ± 3.93, 52.17 ± 3.95) of grass were found to exceed the world average values. The average transfer factors (TFs) for mango were obtained in the order of 40K(0.80) > 226Ra (0.61) > 232Th (0.31), and for grass, it shows the order of 40K (0.78) > 232Th (0.64) > 226Ra (0.56). However, a few values (3 mango samples and 3 grass samples) of the estimated TFs exceeded the recommended limits. Moreover, Bangladesh lacks the transfer factors for most of the food crops; therefore, calculation of TFs in the major agricultural products is required all over Bangladesh, especially the foodstuffs produced near the Rooppur Nuclear Power Plant, which is scheduled to be commissioned in 2023.
Oil palm agriculture has caused extensive land cover and land use changes that have adversely affected tropical landscapes and ecosystems. However, monitoring and assessment of oil palm plantation areas to support sustainable management is costly and labour-intensive. This study used an unmanned aerial vehicles (UAV) to map smallholder farms and applied multi-criteria analysis to data generated from orthomosaics, to provide a set of sustainability indicators for the farms. Images were acquired from a UAV, with structure from motion (SfM) photogrammetry then used to produce orthomosaics and digital elevation models of the farm areas. Some of the inherent problems using high spatial resolution imagery for land cover classification were overcome by using texture analysis and geographic object-based image analysis (OBIA). Six spatially explicit environmental metrics were developed using multi-criteria analysis and used to generate sustainability indicator layers from the UAV data. The SfM and OBIA approach provided an accurate, high-resolution (~5 cm) image-based reconstruction of smallholder farm landscapes, with an overall classification accuracy of 89%. The multi-criteria analysis highlighted areas with lower sustainability values, which should be considered targets for adoption of sustainable management practices. The results of this work suggest that UAVs are a cost-effective tool for sustainability assessments of oil palm plantations, but there remains the need to plan surveys and image processing workflows carefully. Future work can build on our proposed approach, including the use of additional and/or alternative indicators developed through consultation with the oil palm industry stakeholders, to support certification schemes such as the Roundtable on Sustainable Palm Oil (RSPO).
The study aims to assess long-term radiological exposure risks and effects to both industrial workers and occupants living in the near vicinity of local tailing processing plants. The detrimental effects of licensing exemption were studied by comparing contaminated soil collected from 7 unlicensed-by the Atomic Energy Licensing Board-tailing processing plants with soil from control location. It was found that the average concentration of 226Ra, 232Th, and 40 K for all seven processing plants fell between the range of 0.1 ± 0.0-7.21 ± 0.1 Bqg-1, 0.1 ± 0.0-16.34 ± 0.27 Bqg-1, and 0.18 ± 0.01-1.74 ± 0.01 Bqg-1, respectively, showing observable indication of soil contamination with Technologically Enhanced Naturally Occurring Radioactive (TENORM) material. The annual effective dose was calculated which showed that most samples exceeded the recommended value of the ICRP of 1 mSvy-1 for non-radiation workers. Assessment of radiological hazards in the environment was done by calculating the radium equivalent value; revealing the exposure risk posed by the contaminated soil is substantial. Using the relatable inputs, the RESRAD-ONSITE computed code revealed that the dose due to internal exposure via inhalation of radon gas contributes the most to the overall exposure. The covering of the contaminated soil with a clean layer is effective in reducing external dose but ineffective for radon inhalation. RESRAD-OFFSITE computer code also revealed that the contribution of exposure via contaminated soil in the neighbouring vicinity is below the recommended 1 mSvy-1 threshold but still contributes to a significant amount cumulatively when considering other exposure pathways as well. The study proposes the introduction of clean cover soil as a viable option in reducing external dose from contaminated soil as 1 m of clean cover soil is able to reduce dose exposure by 23.8-30.5%.
In the last few decades, environmental contaminants (ECs) have been introduced into the environment at an alarming rate. There is a risk to human health and aquatic ecosystems from trace levels of emerging contaminants, including hospital wastewater (HPWW), cosmetics, personal care products, endocrine system disruptors, and their transformation products. Despite the fact that these pollutants have been introduced or detected relatively recently, information about their characteristics, actions, and impacts is limited, as are the technologies to eliminate them efficiently. A wastewater recycling system is capable of providing irrigation water for crops and municipal sewage treatment, so removing ECs before wastewater reuse is essential. Water treatment processes containing advanced ions of biotic origin and ECs of biotic origin are highly recommended for contaminants. This study introduces the fundamentals of the treatment of tertiary wastewater, including membranes, filtration, UV (ultraviolet) irradiation, ozonation, chlorination, advanced oxidation processes, activated carbon (AC), and algae. Next, a detailed description of recent developments and innovations in each component of the emerging contaminant removal process is provided.
The study explores the spatio-temporal variation of water quality parameters in the Hooghly estuary, which is considered an ecologically-stressed shallow estuary and a major distributary for the Ganges River. The estimated parameters are chlorophyll-a, total suspended matter (TSM), and chromophoric dissolved organic matter (CDOM). The Sentinel-3 OLCI remote sensing imageries were analyzed for the duration of October 2018 to February 2019. We observed that the water quality of the Hooghly estuaries is comparatively low-oxygenated, mesotrophic, and phosphate-limited. Ongoing channel dredging for maintaining shipping channel depth keeps the TSM in the estuary at an elevated level, with the highest amount of TSM observed during March of 2019 (41.59g m-3) at station A, upstream point. Since the pre-monsoon season, TSM data shows a decreasing trend towards the mouth of the estuary. Chl-a concentration is higher during pre-monsoon than monsoon and post-monsoon periods, with the highest value observed in April at 1.09 mg m-3 in station D during the pre-monsoon period. The CDOM concentration was high in the middle section (January-February) and gradually decreased towards the estuary's head and mouth. The highest CDOM was found in February at locations C and D during the pre-monsoon period. Every station shows a significant correlation among CDOM, TSM, and Chl-a measured parameters. Based on our satellite data analysis, it is recommended that SNAP C2RCC be regionally used for TSM, Chl-a, and CDOM for water quality product retrieval and in various algorithms for the Hooghly estuary monitoring.
Water bodies with the dye methylene blue pose serious environmental and health risks to humans. Therefore, the creation and investigation of affordable, potential adsorbents to remove methylene blue dye from water resources as a long-term fix is one focus of the scientific community. Food plants and other carbon-source serve as a hotspot for a wider range of application on different pollutants that impact the environment and living organisms. Here, we reviewed the use of treated and untreated biosorbents made from plant waste leaves for removing the dye methylene blue from aqueous media. After being modified, activated carbon made from various plant leaves improves adsorption performance. The range of activating chemicals, activation methods, and bio-sorbent material characterisation using FTIR analysis, Barunauer-Emmett-Teller (BET) surface area, scanning electron microscope (SEM-EDX), and SEM-EDX have all been covered in this review. It has been thoroughly described how the pH solution of the methylene blue dye compares to the pHPZC of the adsorbent surface. The presentation also includes a thorough analysis of the application of the isotherm model, kinetic model, and thermodynamic parameters. The selectivity of the adsorbent is the main focus of the adsorption kinetics and isotherm models. It has been studied how adsorption occurs, how surface area and pH affect it, and how biomass waste compares to other adsorbents. The use of biomass waste as adsorbents is both environmentally and economically advantageous, and it has been discovered to have exceptional color removal capabilities.
This study presents the kinetics and thermodynamics of biomass pyrolysis. The kinetics of the pyrolysis process was estimated using ten kinetic models from three different mechanisms, namely chemical reaction, diffusion, and nucleation and growth. Results showed that each pyrolysis subdivision was described by a different reaction model, signifying the complex nature of the pyrolysis process. The average values of activation energy determined from the kinetic models for empty fruit bunch, coconut shell, bamboo, and cardboard are 10.2-64.6 kJ/mol, 18.7-186.2 kJ/mol, 8.0-70.8 kJ/mol, and 13.1-277.3 kJ/mol, respectively. The biomass pyrolysis is endothermic and non-spontaneous and would require external energy to initiate the degradation process. The findings are helpful in characterizing the thermal degradation of biomass in exploring its potential as a source of alternative solid fuel.
Occurrence and distribution of organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), and pyrethroid pesticides (PYRs) residues in the leafy vegetables were analyzed together with the soil samples using gas chromatography-electron capture detector. Edible tissues of vegetables showed detectable residues of these compounds indicating the influence of the conventional farms and nearby organic farms. In the vegetables, the OCPs concentrations were recorded as nd-133.3 ng/g, OPPs as nd-200 ng/g, and PYRs as nd-33.3 ng/g. In the soil, the OCPs concentrations were recorded as nd-30.6 ng/g, OPPs as nd-26.6 ng/g, and for PYRs as nd-6.7 ng/g. Bioconcentration factor (BCF) was higher for the OPPs (0.3) than the OCPs and PYRs (1.1). The OCPs concentration in the vegetables decreased in the following order: spinach > celery > broccoli > cauliflower > cabbage > lettuce > mustard. For OPPs, the concentration decreased in the following order: cauliflower > spinach > celery > cabbage > broccoli > lettuce > mustard and for PYRs as spinach > celery > lettuce > cabbage > broccoli. Principal component analysis indicates that the sources of these pesticides are not the same, and the pesticide application on the vegetables depends on the type of crop. There is a significant positive correlation between OPPs and the soil (r = 0.65) as compared to OCPs and PYRs (r = 0.1) as the vegetables accumulated OPPs more efficiently than OCPs and PYRs.
Microplastics (MPs) pose a threat to ecosystems due to their capacity to bind with toxic chemicals. While the occurrence of MPs in aquatic environmental matrices like water, sediments, and biota is well studied, their presence in the atmosphere remains less understood. This study aimed to determine the presence of airborne MPs and their characteristics through ground-based sampling in the coastal city of Kuala Nerus, Terengganu, Malaysia. Airborne MP samples were collected using passive sampling technique in December 2019. MPs were manually counted and identified using a stereomicroscope based on their colour and shape. The average deposition rate of airborne MPs during the sampling period was 5476 ± 3796 particles/m2/day, ranging from 576 to 15,562 particles/m2/day. Various colours such as transparent (38%), blue (25%), black (20%), red (13%), and others (4%) were observed. The predominant shape of airborne MPs was fibres (> 99%). The morphology structure of MPs observed using a scanning electron microscope (SEM) showed a cracked surface on MPs, suggesting weathering and irregular fragmentation. Further elemental analysis using energy dispersive X-ray spectroscopy (EDS) showed the presence of heavy metals such as aluminium (Al) and cadmium (Cd) on the surface of MPs, attributed to the adsorption capacities of MPs. Polymer types of airborne MPs were analysed using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), which revealed particles composed of polyester (PES), polyethylene (PE), and polypropylene (PP). The preliminary findings could provide additional information for further investigations of MPs, especially in the atmosphere, to better understand their sources and potential human exposure.
Presently, microplastic pollution has emerged as a growing environmental risk around the world. Nevertheless, knowledge of the occurrence and characteristics of microplastics in tropical agricultural soil is limited. This study investigated the pollution of surface soil microplastics in two agricultural farms located at Klang Valley, Malaysia. An extraction method based on density separation by using saturated extraction solution (sodium sulfate, ρ = 2 g cm-3 and sucrose, ρ = 1.59 g cm-3 with a ratio 1:1, v/v) was carried out. The study revealed the mean particle size of soil microplastics with 3260.76 ± 880.38 μm in farm A and 2822.31 ± 408.48 μm in farm B. The dominant types of soil microplastics were fragments and films with major colors of white (59%) and transparent (28%) in farm A, while black (52%) and white (37.6%) in farm B. Representatives of soil microplastics detected polymers of polyvinyl chloride (PVC), high density polyethylene (HDPE), polycarbonate (PC), and polystyrene (PS). The sources of plastic products were black and white plastic pipes, black plastic films for vegetation, fertilizer bottles, plastic water containers and polystyrene storage boxes, and the breakdown processes, contributed to the microplastic pollution in these farms. The outcomes of this study will establish a better understanding of microplastic pollution in tropical agricultural soil in the Southeast Asian region. The findings would be beneficial as supportive reference for the endeavor to reduce microplastic pollution in agricultural soil.
Miners, factory workers, traders, end-users, and foodstuff consumers all run the risk of encountering health hazards derived from the presence of elevated levels of radiation in fertilizers, as these groups often come into direct or indirect contact with fertilizers as well as raw materials throughout various linked processes such as mineral extractions, fertilizer production, agricultural practices. A total of 30 samples of various kinds of fertilizer produced in different factories in Dhaka megacity were analyzed to quantify the concentrations of primordial radionuclides using HPGe detector. Among the analyzed samples, average (range) concentration of 40K was found to be 9920 ± 1091 (8700 ± 957-11,500 ± 1265), 9100 ± 1001 (8600 ± 946-9600 ± 1056), 2565 ± 282 (2540 ± 279-2590 ± 285), and 3560 ± 392 (2620 ± 288-4500 ± 495) Bq/kg in the samples of Muriate of Potash Fertilizer, Sulphate of Potash Fertilizer, Humic Acid Fertilizer, and NPKS Fertilizer, respectively. Elevated concentration of 226Ra was found in Triple Super Phosphate Fertilizer with a mean (range) of 335 ± 37 (290 ± 32-380 ± 42) Bq/kg. The higher activity of 40K can be linked to the greater levels of elemental potassium in phosphate fertilizer. Elevated concentrations of radionuclides may also result from variations in chemical processes as well as the local geology of the mining areas where the raw materials were extracted for fertilizer production. Numerous fertilizer brands surpass prescribed limits for various hazardous parameters, presenting significant health risks to factory workers, farmers, and consumers of agricultural products. This study provides baseline information on the radioactivity of fertilizers, which could be used to develop mitigation methods, establish national fertilizer usage limits, justify regulatory frameworks, and raise public awareness of fertilizer overuse. The findings of the study could potentially help to explore the impact of fertilizer on the food chain.