The responses of tropical forests to global anthropogenic disturbances remain poorly understood. Above-ground woody biomass in some tropical forest plots has increased over the past several decades, potentially reflecting a widespread response to increased resource availability, for example, due to elevated atmospheric CO2 and/or nutrient deposition. However, previous studies of biomass dynamics have not accounted for natural patterns of disturbance and gap phase regeneration, making it difficult to quantify the importance of environmental changes. Using spatially explicit census data from large (50 ha) inventory plots, we investigated the influence of gap phase processes on the biomass dynamics of four 'old-growth' tropical forests (Barro Colorado Island (BCI), Panama; Pasoh and Lambir, Malaysia; and Huai Kha Khaeng (HKK), Thailand). We show that biomass increases were gradual and concentrated in earlier-phase forest patches, while biomass losses were generally of greater magnitude but concentrated in rarer later-phase patches. We then estimate the rate of biomass change at each site independent of gap phase dynamics using reduced major axis regressions and ANCOVA tests. Above-ground woody biomass increased significantly at Pasoh (+0.72% yr(-1)) and decreased at HKK (-0.56% yr(-1)) independent of changes in gap phase but remained stable at both BCI and Lambir. We conclude that gap phase processes play an important role in the biomass dynamics of tropical forests, and that quantifying the role of gap phase processes will help improve our understanding of the factors driving changes in forest biomass as well as their place in the global carbon budget.
More than half of all tropical forests are degraded by human impacts, leaving them threatened with conversion to agricultural plantations and risking substantial biodiversity and carbon losses. Restoration could accelerate recovery of aboveground carbon density (ACD), but adoption of restoration is constrained by cost and uncertainties over effectiveness. We report a long-term comparison of ACD recovery rates between naturally regenerating and actively restored logged tropical forests. Restoration enhanced decadal ACD recovery by more than 50%, from 2.9 to 4.4 megagrams per hectare per year. This magnitude of response, coupled with modal values of restoration costs globally, would require higher carbon prices to justify investment in restoration. However, carbon prices required to fulfill the 2016 Paris climate agreement [$40 to $80 (USD) per tonne carbon dioxide equivalent] would provide an economic justification for tropical forest restoration.
The developed microbial granules containing photosynthetic pigments had successfully achieved approximately 18-21% of carbon dioxide (CO2) removal in POME for one complete SBR cycle. Also, the granules had reached CO2 removal at 15-29% within 24h and removal of 25% after 5 days. Both results were inconsistent possibly due to the slow mass transfer rate of CO2 from gas to liquid as well as the simultaneous effect of CO2 production and respiration among the microbes. Furthermore, results showed the removal of CO2 from air increases proportionally with the CO2 removed in liquid. The CO2 biofixation of granules attained was approximately 0.23g/L/day for a week. Using the regression model, the removal of CO2 between liquid and gas, CO2 biofixation rate were highly correlated with the treatment time. A statistically significant relationship was obtained between CO2 concentration in liquid, biomass productivity and treatment time for the CO2 biofixation rate of the granules.
While existing moratoria in Indonesia and Malaysia should preclude continued large-scale expansion of palm oil production into new areas of South-East Asian tropical peatland, existing plantations in the region remain a globally significant source of atmospheric carbon due to drainage driven decomposition of peatland soils. Previous studies have made clear the direct link between drainage depth and peat carbon decomposition and significant reductions in the emission rate of CO2 can be made by raising water tables nearer to the soil surface. However, the impact of such changes on palm fruit yield is not well understood and will be a critical consideration for plantation managers. Here we take advantage of very high frequency, long-term monitoring of canopy-scale carbon exchange at a mature oil palm plantation in Malaysian Borneo to investigate the relationship between drainage level and photosynthetic uptake and consider the confounding effects of light quality and atmospheric vapour pressure deficit. Canopy modelling from our dataset demonstrated that palms were exerting significantly greater stomatal control at deeper water table depths (WTD) and the optimum WTD for photosynthesis was found to be between 0.3 and 0.4 m below the soil surface. Raising WTD to this level, from the industry typical drainage level of 0.6 m, could increase photosynthetic uptake by 3.6 % and reduce soil surface emission of CO2 by 11 %. Our study site further showed that despite being poorly drained compared to other planting blocks at the same plantation, monthly fruit bunch yield was, on average, 14 % greater. While these results are encouraging, and at least suggest that raising WTD closer to the soil surface to reduce emissions is unlikely to produce significant yield penalties, our results are limited to a single study site and more work is urgently needed to confirm these results at other plantations.
This paper analyses empirically the optimal climate change mitigation policy of Malaysia with the business as usual scenario of ASEAN to compare their environmental and economic consequences over the period 2010-2110. A downscaling empirical dynamic model is constructed using a dual multidisciplinary framework combining economic, earth science, and ecological variables to analyse the long-run consequences. The model takes account of climatic variables, including carbon cycle, carbon emission, climatic damage, carbon control, carbon concentration, and temperature. The results indicate that without optimal climate policy and action, the cumulative cost of climate damage for Malaysia and ASEAN as a whole over the period 2010-2110 would be MYR40.1 trillion and MYR151.0 trillion, respectively. Under the optimal policy, the cumulative cost of climatic damage for Malaysia would fall to MYR5.3 trillion over the 100 years. Also, the additional economic output of Malaysia will rise from MYR2.1 billion in 2010 to MYR3.6 billion in 2050 and MYR5.5 billion in 2110 under the optimal climate change mitigation scenario. The additional economic output for ASEAN would fall from MYR8.1 billion in 2010 to MYR3.2 billion in 2050 before rising again slightly to MYR4.7 billion in 2110 in the business as usual ASEAN scenario.
The aim of this research is to explore the effect of biomass energy consumption on CO2 emissions in 80 developed and developing countries. To achieve robustness, the system generalised method of moment was used and several control variables were incorporated into the model including real GDP, fossil fuel consumption, hydroelectricity production, urbanisation, population, foreign direct investment, financial development, institutional quality and the Kyoto protocol. Relying on the classification of the World Bank, the countries were categorised to developed and developing countries. We also used a dynamic common correlated effects estimator. The results consistently show that biomass energy as well as fossil fuel consumption generate more CO2 emissions. A closer look at the results show that a 100% increase in biomass consumption (tonnes per capita) will increase CO2 emissions (metric tons per capita) within the range of 2 to 47%. An increase of biomass energy intensity (biomass consumption in tonnes divided by real gross domestic product) of 100% will increase CO2 emissions (metric tons per capita) within the range of 4 to 47%. An increase of fossil fuel consumption (tonnes of oil equivalent per capita) by 100% will increase CO2 emissions (metric tons per capita) within the range of 35 to 55%. The results further show that real GDP urbanisation and population increase CO2 emissions. However, hydroelectricity and institutional quality decrease CO2 emissions. It is further observed that financial development, foreign direct investment and openness decrease CO2 emissions in the developed countries, but the opposite results are found for the developing nations. The results also show that the Kyoto Protocol reduces emission and that Environmental Kuznets Curve exists. Among the policy implications of the foregoing results is the necessity of substituting fossil fuels with other types of renewable energy (such as hydropower) rather than biomass energy for reduction of emission to be achieved.
Within a framework that includes economic activity, real interest rate, grants, and subsidies, we aim to explore the role of renewable energy, technological innovation, and particularly the environmentally damaging militarization in driving green growth, which fosters sustainable economic growth by ensuring the values of natural assets, considering OECD countries. Our examination affirms a positive proposition between the development of renewable energy, technological innovation, and green growth in the long run by implementing the cross-sectional dependency panel autoregressive-distributed lags (CS-ARDL) framework in a dynamic heterogeneous panel setting. The findings also suggest that militarization is antagonistic to green growth. Our decomposed analysis is compatible with our premier analysis, indicating a conducive impact of both biomass and non-biomass types of renewable energy on green growth. We also document a negative association between the real interest rate (RIR) and green growth, while income muddles the results. The robustness tests confirm the sensitivity of our main findings to the magnitude of the subsidies and grants provided to renewable energy. The paper concludes with several policy recommendations.
The main aim of this article is to examine empirically the impact of urbanization on carbon dioxide emissions in Singapore from 1970 to 2015. The autoregressive distributed lags (ARDL) approach is applied within the analysis. The main finding reveals a negative and significant impact of urbanization on carbon emissions in Singapore, which means that urban development in Singapore is not a barrier to the improvement of environmental quality. Thus, urbanization enhances environmental quality by reducing carbon emissions in the sample country. The result also highlighted that economic growth has a positive and significant impact on carbon emissions, which suggests that economic growth reduces environmental quality through its direct effect of increasing carbon emissions in the country. Despite the high level of urbanization in Singapore, which shows that 100 % of the populace is living in the urban center, it does not lead to more environmental degradation. Hence, urbanization will not be considered an obstacle when initiating policies that will be used to reduce environmental degradation in the country. Policy makers should consider the country's level of economic growth instead of urbanization when formulating policies to reduce environmental degradation, due to its direct impact on increasing carbon dioxide emissions.
Like other developing countries, Pakistan is also facing changes in temperature per decade and other climatic abnormalities like droughts and torrential rains. In order to assess and identify the extent of temperature change over Pakistan, the whole Pakistan was divided into five climatic zones ranging from very cold to hot and dry climates. Similarly, seasons in Pakistan are defined on the basis of monsoon variability as winter, pre-monsoon, monsoon, and post-monsoon. This study primarily focuses on the comparison of surface temperature observations from Pakistan Meteorological Department (PMD) network with PRECIS (Providing Regional Climates for Impacts Studies) model simulations. Results indicate that PRECIS underestimates the temperature in Northern Pakistan and during the winter season. However, there exists a fair agreement between PRECIS output and observed datasets in the lower plain and hot areas of the country. An absolute increase of 0.07 °C is observed in the mean temperature over Pakistan during the time period of 1951-2010. Especially, the increase is more significant (0.7 °C) during the last 14 years (1997-2010). Moreover, SCIAMACHY observations were used to explore the evolution of atmospheric CO2 levels in comparison to temperature over Pakistan. CO2 levels have shown an increasing trend during the first decade of the twenty-first century.
The main objective of this study is to investigate the influence of the globalisation (Trans-Pacific Partnership (TPP) agreement in particular) on air pollution in Malaysia. To achieve this goal, the Autoregressive Distributed Lag (ARDL) model, Johansen cointegration test and fully modified ordinary least square (FMOLS) methods are utilised. CO2 emission is used as an indicator of pollution while GDP per capita and urbanisation serve as its other determinants. In addition, this study uses Malaysia's total trade with 10 TPP members as an indicator of globalisation and analyse its effect on CO2 emission in Malaysia. The outcome of this research shows that the variables are cointegrated. Additionally, GDP per capita, urbanisation and trade between Malaysia and its 10 TPP partners have a positive impact on CO2 emissions in general. Based on the outcome of this research, important policy implications are provided for the investigated country.
In light of a slow buildup in CO2 emissions since the recovery, this paper revisits the relationship between CO2 emissions and the US economy using a nonlinear autoregressive distributed lag model, in which the determinants are identified through an expanded real business cycle model. We find convincing evidence that CO2 emissions decline more rapidly during recessions than increase during expansions over the long run. Of all determinants considered, long-run asymmetry is fostered once vehicle miles traveled is controlled. This calls for a greater attention to public transportation development and vehicle miles traveled tax for slowing down stock buildup of CO2 emissions during good times.
The efficient consumption of material and energy resources, with minimal carbon emissions and maximum economic output, is globally significant. This study examines the metabolic transition of resource use and CO2 emissions in nine of the largest economies of East, South, and Southeast Asia. A data envelopment model has been developed to assess the efficiency of domestic material consumption and CO2 emissions during 1971-2016 at three levels of analysis. The single-country analysis results reveal that China has made the most rapid efficiency transformation during 1971-2016 followed by Japan and South Korea, while the rest of the countries in South and Southeast Asia have not illustrated significant improvements. Results from the analysis of socio-economically grouped countries show that Japan and Bangladesh are the relatively efficient economies in East and South Asia, respectively. Among Southeast Asian countries, both Indonesia and Malaysia were found to be efficient. Based on the regional analysis comparing all nine countries, Japan has consistently remained a relatively efficient economy while China-despite rapid improvements-remains a relatively inefficient economy. To this end, Japan had the lowest material and CO2 intensities compared to all other countries. Based on our results, technological advancement, industry structure, and scale of traded goods and services were found to have a significant impact (the impact of per capita income was less pronounced) on a country's effective resource utilization and carbon mitigation.
This study aims to determine an interactive environmental model for economic growth that would be supported by the "sustainability principles" across the globe. The study examines the relationship between environmental pollutants (i.e., carbon dioxide emission, sulfur dioxide emission, mono-nitrogen oxide, and nitrous oxide emission); population growth; energy use; trade openness; per capita food production; and it's resulting impact on the real per capita GDP and sectoral growth (i.e., share of agriculture, industry, and services in GDP) in a panel of 34 high-income OECD, high-income non-OECD, and Europe and Central Asian countries, for the period of 1995-2014. The results of the panel fixed effect regression show that per capita GDP are influenced by sulfur dioxide emission, population growth, and per capita food production variability, while energy and trade openness significantly increases per capita income of the region. The results of the panel Seemingly Unrelated Regression (SUR) show that carbon dioxide emission significantly decreases the share of agriculture and industry in GDP, while it further supports the share of services sector to GDP. Both the sulfur dioxide and mono-nitrogen oxide emission decreases the share of services in GDP; nitrous oxide decreases the share of industry in GDP; while mono-nitrogen oxide supports the industrial activities. The following key growth-specific results has been obtained from the panel SUR estimation, i.e., (i) Both the food production per capita and trade openness significantly associated with the increasing share of agriculture, (ii) food production and energy use significantly increases the service sectors' productivity; (iii) food production decreases the industrial activities; (iv) trade openness decreases the share of services to GDP while it supports the industrial share to GDP; and finally, (v) energy demand decreases along with the increase agricultural share in the region. The results emphasize the need for an interactive environmental model that facilitates the process of sustainable development across the globe.
The objective of this study is to examine the impact of natural gas consumption, output, and urbanization on CO2 emission in China and India for the period, 1965-2013. A cointegraton test, which provides for endogenously determined structural breaks, has been applied to examine the long-run relationship and to investigate the presence of environmental Kuznets curve (EKC) in the two countries. The presence of causal relationship between the variables is also investigated. The findings show that there is a long-run relationship in the variables and natural gas, real GDP, and urbanization have long-run positive impact on emission in both countries. There is no evidence for EKC in China and India. The findings further suggest that there is a long-run feedback relationship between the variables. The policy inferences of these findings are discussed.
Empirical studies pertaining to the effects of fiscal policy instruments on environmental quality have provided mixed evidence. We consider the asymmetric effects of fiscal policy instruments on environmental quality for the top ten Asian carbon emitters over the period 1981-2018. We go beyond the literature and claim that the effects could be asymmetric. More specifically, we found that a positive shock in government expenditure will worsen environmental quality in Malaysia, UAE, Thailand, Indonesia, Turkey, Iran, India, and China, and improve it in Japan. On the other hand, we found that cutting government expenditure will improve environmental quality in these economies and will worsen only in Japan. Moreover, a higher government income tax revenue uniquely increases the government's spending that increases the carbon emissions in Malaysia, UAE, Thailand, Indonesia, Turkey, Iran, India, and China, and decrease in Japan. The negative shock of government revenue has adverse results on carbon emissions in these economies. However, short-run asymmetric effects translate to long-run effects in most Asian economies.
The developing world is facing pivotal challenges in recent times. Among these, global warming has ominous repercussions on every segment of society, thus tracing its underlying causes is imperative. This research attempts to investigate the impact of urbanization and energy consumption on carbon dioxide emissions (CO2) for a panel of 8 Asian countries (Bangladesh, China, India, Indonesia, Malaysia, Nepal, Pakistan, and Sri Lanka) over the period 1982 to 2017. The analyses are executed using panel co-integration and Granger causality techniques. The main findings of panel co-integration reveal a long-run relationship between urbanization, energy consumption, and CO2 emissions. Furthermore, the results indicate a positive and significant impact of urbanization and energy consumption on CO2 emissions, indicating that urban development and high energy consumptions are barriers to improve environmental quality in the long run. The results also highlight bi-directional causality between energy consumption and urbanization, while unidirectional causality exists between energy consumption and CO2 emissions. Based on the obtained results, this study offers useful policy implications for plummeting carbon emissions.
Pollution haven hypothesis (PHH) has been investigated extensively in the existing literature due to global environmental issues such as global warming and climate change. However, there is still no consensus on whether this hypothesis is valid. Therefore, the aim of this study is to examine the validity of the PHH in ASEAN-5 countries (Indonesia, Malaysia, Philippines, Singapore, and Thailand) covering the period of 1981-2014. It is utilized the up-to-date panel data techniques taking cross-sectional dependence and slope heterogeneity into account to test the relationship. According to the results of CCEMG and AMG estimators, the validity of the PHH is confirmed in ASEAN-5 countries. The increase in foreign direct investments (FDI) increases environmental degradation in these countries. Our additional findings show that the environmental Kuznets curve (EKC) hypothesis (EKC) is also valid in these countries. There is an inverted U shape between economic growth and CO2 emissions. In addition, energy consumption exacerbates CO2 emissions.
In this paper, we revisit the environmental Kuznets curve (EKC) hypothesis by using estimations that account for cross-sectional dependency (CSD) and asymmetry effect in 76 countries for the period 1971-2014. Our results lend moderate support to the EKC hypothesis. The country-specific results unfold that a total of 16 out of 76 countries support the EKC hypothesis using CCEMG estimator. Results from AMG reveal that the EKC hypothesis holds in 24 out of 76 countries. It is worth highlighting that 11 countries (Australia, China, Congo Dem. Rep., Costa Rica, Gabon, Hong Kong, India, Korea, Myanmar, Turkey, and Uruguay) exhibit an inverted U-shaped curve regardless of whether CCEMG or AMG is used. The asymmetry analysis using PMG is also able to support the EKC hypothesis. We conclude that the EKC hypothesis does not fit all countries. Policy implication and recommendation in designing appropriate energy and economic policies are provided.
It is well documented that carbon emissions can be reduced by replacing conventional energy resources with renewable energy resources; thereby, the role of green technology is essential as it protect natural environment. Given that, the United Nations' agenda of "green is clean" may be achievable by adoption of green technologies. The objective of the study is to examine the link between information and communication technology (ICT), economic growth, energy consumption, and carbon dioxide (CO2) emissions in the context of South Korean economy, by using a novel Morlet wavelet approach. The study applies continuous wavelet power spectrum, the wavelet coherency, and the partial and the multiple wavelet coherency to the year during 1973-2016. The outcomes reveal that the connections among the stated variables progress over frequency and time domain. From the frequency domain point of view, the current study discovers noteworthy wavelet coherence and robust lead and lag linkages. From the time-domain sight, the results display robust but not consistent associations among the considered variables. From an economic point sight, the wavelet method displays that ICT helps to reduce environmental degradation in a medium and long run in the South Korean economy. This emphasizes the significance of having organized strategies by the policymakers to cope up with 2 to 3 years of the occurrence of the huge environmental degradation in South Korea.
In this study, hydrothermal carbonization (HTC) of a biomass was used as a means to improve the physicochemical properties of rubber seed shell (RSS) and enhance its reactivity in the char-CO2 gasification reaction, known as the Boudouard reaction (C + CO2 ↔ 2CO). Hydrochar samples were developed by hydrothermal treatment of RSS, without separating the solid residue from the liquid product, at 433, 473, 513, and 553 K under autogenous pressure. The CO2 gasification reactivity of the developed hydrochars was then investigated at different heating rates (5, 10, 20, and 30 K/min) by the non-isothermal thermogravimetric method. The hydrochars revealed higher reactivity and improved gasification characteristics compared to the untreated biomass, while the hydrochar which was filtered from the liquid slurry showed lower reactivity compared to the untreated biomass. This was due to the chemical and structural evolutions of the biomass during hydrothermal treatment as indicated by various analyses. The gasification reactivity of the hydrochar was substantially enhanced by introduction of a catalyst (NaNO3) during HTC. Kinetic analysis of the char-CO2 gasification reaction was carried out by applying Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS), and Starink isoconversional methods, and thermodynamic parameters were also determined. The activation energy of the Na-loaded RSS hydrochar in CO2 gasification (120-154 kJ/mol) was considerably lower than that of the untreated biomass (153-172 kJ/mol). Thermodynamic studies also confirmed the promoting effect of hydrothermal treatment and catalyst impregnation on enhancement of reactivity of the virgin biomass and reduction of gasification temperature.