The production of ϒ(2S) and ϒ(3S) mesons in lead-lead (Pb-Pb) and proton-proton (pp) collisions is studied in their dimuon decay channel using the CMS detector at the LHC. The ϒ(3S) meson is observed for the first time in Pb-Pb collisions, with a significance above 5 standard deviations. The ratios of yields measured in Pb-Pb and pp collisions are reported for both the ϒ(2S) and ϒ(3S) mesons, as functions of transverse momentum and Pb-Pb collision centrality. These ratios, when appropriately scaled, are significantly less than unity, indicating a suppression of ϒ yields in Pb-Pb collisions. This suppression increases from peripheral to central Pb-Pb collisions. Furthermore, the suppression is stronger for ϒ(3S) mesons compared to ϒ(2S) mesons, extending the pattern of sequential suppression of quarkonium states in nuclear collisions previously seen for the J/ψ, ψ(2S), ϒ(1S), and ϒ(2S) mesons.
The standard model (SM) production of four top quarks ( t t ¯ t t ¯ ) in proton-proton collisions is studied by the CMS Collaboration. The data sample, collected during the 2016-2018 data taking of the LHC, corresponds to an integrated luminosity of 137 fb - 1 at a center-of-mass energy of 13 TeV . The events are required to contain two same-sign charged leptons (electrons or muons) or at least three leptons, and jets. The observed and expected significances for the t t ¯ t t ¯ signal are respectively 2.6 and 2.7 standard deviations, and the t t ¯ t t ¯ cross section is measured to be 12 . 6 - 5.2 + 5.8 fb . The results are used to constrain the Yukawa coupling of the top quark to the Higgs boson, y t , yielding a limit of | y t / y t SM | < 1.7 at 95 % confidence level, where y t SM is the SM value of y t . They are also used to constrain the oblique parameter of the Higgs boson in an effective field theory framework, H ^ < 0.12 . Limits are set on the production of a heavy scalar or pseudoscalar boson in Type-II two-Higgs-doublet and simplified dark matter models, with exclusion limits reaching 350-470 GeV and 350-550 GeV for scalar and pseudoscalar bosons, respectively. Upper bounds are also set on couplings of the top quark to new light particles.
A search for supersymmetry is presented based on events with at least one photon, jets, and large missing transverse momentum produced in proton-proton collisions at a center-of-mass energy of 13
Te
. The data correspond to an integrated luminosity of 35.9
fb
- 1
and were recorded at the LHC with the CMS detector in 2016. The analysis characterizes signal-like events by categorizing the data into various signal regions based on the number of jets, the number of b -tagged jets, and the missing transverse momentum. No significant excess of events is observed with respect to the expectations from standard model processes. Limits are placed on the gluino and top squark pair production cross sections using several simplified models of supersymmetric particle production with gauge-mediated supersymmetry breaking. Depending on the model and the mass of the next-to-lightest supersymmetric particle, the production of gluinos with masses as large as 2120
Ge
and the production of top squarks with masses as large as 1230
Combined measurements of the production and decay rates of the Higgs boson, as well as its couplings to vector bosons and fermions, are presented. The analysis uses the LHC proton-proton collision data set recorded with the CMS detector in 2016 at s = 13 Te , corresponding to an integrated luminosity of 35.9 fb - 1 . The combination is based on analyses targeting the five main Higgs boson production mechanisms (gluon fusion, vector boson fusion, and associated production with a W or Z boson, or a top quark-antiquark pair) and the following decay modes: H → γ γ , Z Z , W W , τ τ , b b , and μ μ . Searches for invisible Higgs boson decays are also considered. The best-fit ratio of the signal yield to the standard model expectation is measured to be μ = 1.17 ± 0.10 , assuming a Higgs boson mass of 125.09 Ge . Additional results are given for various assumptions on the scaling behavior of the production and decay modes, including generic parametrizations based on ratios of cross sections and branching fractions or couplings. The results are compatible with the standard model predictions in all parametrizations considered. In addition, constraints are placed on various two Higgs doublet models.
A measurement for inclusive 2- and 3-jet events of the azimuthal correlation between the two jets with the largest transverse momenta, Δ ϕ 12 , is presented. The measurement considers events where the two leading jets are nearly collinear ("back-to-back") in the transverse plane and is performed for several ranges of the leading jet transverse momentum. Proton-proton collision data collected with the CMS experiment at a center-of-mass energy of 13 Te and corresponding to an integrated luminosity of 35.9 fb - 1 are used. Predictions based on calculations using matrix elements at leading-order and next-to-leading-order accuracy in perturbative quantum chromodynamics supplemented with leading-log parton showers and hadronization are generally in agreement with the measurements. Discrepancies between the measurement and theoretical predictions are as large as 15%, mainly in the region 177 ∘ < Δ ϕ 12 < 180 ∘ . The 2- and 3-jet measurements are not simultaneously described by any of models.
A search is presented for a heavy pseudoscalar boson A decaying to a Z boson and a Higgs boson with mass of 125 GeV . In the final state considered, the Higgs boson decays to a bottom quark and antiquark, and the Z boson decays either into a pair of electrons, muons, or neutrinos. The analysis is performed using a data sample corresponding to an integrated luminosity of 35.9 fb - 1 collected in 2016 by the CMS experiment at the LHC from proton-proton collisions at a center-of-mass energy of 13 Te . The data are found to be consistent with the background expectations. Exclusion limits are set in the context of two-Higgs-doublet models in the A boson mass range between 225 and 1000 GeV .
A search for new physics in top quark production is performed in proton-proton collisions at 13 TeV . The data set corresponds to an integrated luminosity of 35.9 fb - 1 collected in 2016 with the CMS detector. Events with two opposite-sign isolated leptons (electrons or muons), and b quark jets in the final state are selected. The search is sensitive to new physics in top quark pair production and in single top quark production in association with a W boson. No significant deviation from the standard model expectation is observed. Results are interpreted in the framework of effective field theory and constraints on the relevant effective couplings are set, one at a time, using a dedicated multivariate analysis. This analysis differs from previous searches for new physics in the top quark sector by explicitly separating t W from t t ¯ events and exploiting the specific sensitivity of the t W process to new physics.
A search for heavy resonances with masses above 1 TeV , decaying to final states containing a vector boson and a Higgs boson, is presented. The search considers hadronic decays of the vector boson, and Higgs boson decays to b quarks. The decay products are highly boosted, and each collimated pair of quarks is reconstructed as a single, massive jet. The analysis is performed using a data sample collected in 2016 by the CMS experiment at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV , corresponding to an integrated luminosity of 35.9 fb - 1 . The data are consistent with the background expectation and are used to place limits on the parameters of a theoretical model with a heavy vector triplet. In the benchmark scenario with mass-degenerate W ' and Z ' bosons decaying predominantly to pairs of standard model bosons, for the first time heavy resonances for masses as high as 3.3 TeV are excluded at 95% confidence level, setting the most stringent constraints to date on such states decaying into a vector boson and a Higgs boson.
Observation of the diphoton decay mode of the recently discovered Higgs boson and measurement of some of its properties are reported. The analysis uses the entire dataset collected by the CMS experiment in proton-proton collisions during the 2011 and 2012 LHC running periods. The data samples correspond to integrated luminosities of 5.1[Formula: see text]at [Formula: see text] and 19.7[Formula: see text]at 8[Formula: see text] . A clear signal is observed in the diphoton channel at a mass close to 125[Formula: see text] with a local significance of [Formula: see text], where a significance of [Formula: see text] is expected for the standard model Higgs boson. The mass is measured to be [Formula: see text] , and the best-fit signal strength relative to the standard model prediction is [Formula: see text][Formula: see text][Formula: see text]. Additional measurements include the signal strength modifiers associated with different production mechanisms, and hypothesis tests between spin-0 and spin-2 models.
A measurement is presented of differential cross sections for Higgs boson (H) production in pp collisions at [Formula: see text][Formula: see text]. The analysis exploits the [Formula: see text] decay in data corresponding to an integrated luminosity of 19.7[Formula: see text] collected by the CMS experiment at the LHC. The cross section is measured as a function of the kinematic properties of the diphoton system and of the associated jets. Results corrected for detector effects are compared with predictions at next-to-leading order and next-to-next-to-leading order in perturbative quantum chromodynamics, as well as with predictions beyond the standard model. For isolated photons with pseudorapidities [Formula: see text], and with the photon of largest and next-to-largest transverse momentum ([Formula: see text]) divided by the diphoton mass [Formula: see text] satisfying the respective conditions of [Formula: see text] and [Formula: see text], the total fiducial cross section is [Formula: see text][Formula: see text].
Measurements of the [Formula: see text][Formula: see text] production cross sections in proton-proton collisions at center-of-mass energies of 7 and 8[Formula: see text] are presented. Candidate events for the leptonic decay mode [Formula: see text], where [Formula: see text] denotes an electron or a muon, are reconstructed and selected from data corresponding to an integrated luminosity of 5.1 (19.6)[Formula: see text] at 7 (8)[Formula: see text] collected with the CMS experiment. The measured cross sections, [Formula: see text] at 7[Formula: see text], and [Formula: see text] at 8[Formula: see text], are in good agreement with the standard model predictions with next-to-leading-order accuracy. The selected data are analyzed to search for anomalous triple gauge couplings involving the [Formula: see text][Formula: see text] final state. In the absence of any deviation from the standard model predictions, limits are set on the relevant parameters. These limits are then combined with the previously published CMS results for [Formula: see text][Formula: see text] in 4[Formula: see text] final states, yielding the most stringent constraints on the anomalous couplings.
The first search for soft unclustered energy patterns (SUEPs) is performed using an integrated luminosity of 138 fb^{-1} of proton-proton collision data at sqrt[s]=13 TeV, collected in 2016-2018 by the CMS detector at the LHC. Such SUEPs are predicted by hidden valley models with a new, confining force with a large 't Hooft coupling. In events with boosted topologies, selected by high-threshold hadronic triggers, the multiplicity and sphericity of clustered tracks are used to reject the background from standard model quantum chromodynamics. With no observed excess of events over the standard model expectation, limits are set on the cross section for production via gluon fusion of a scalar mediator with SUEP-like decays.
The mass of the top quark is measured using a sample of t t ¯ events collected by the CMS detector using proton-proton collisions at s = 13 TeV at the CERN LHC. Events are selected with one isolated muon or electron and at least four jets from data corresponding to an integrated luminosity of 35.9 fb - 1 . For each event the mass is reconstructed from a kinematic fit of the decay products to a t t ¯ hypothesis. Using the ideogram method, the top quark mass is determined simultaneously with an overall jet energy scale factor (JSF), constrained by the mass of the W boson in q q ¯ ' decays. The measurement is calibrated on samples simulated at next-to-leading order matched to a leading-order parton shower. The top quark mass is found to be 172.25 ± 0.08 (stat+JSF) ± 0.62 (syst) GeV . The dependence of this result on the kinematic properties of the event is studied and compared to predictions of different models of t t ¯ production, and no indications of a bias in the measurements are observed.
The exclusive photoproduction of Υ ( nS ) meson states from protons, γ p → Υ ( nS ) p (with n = 1 , 2 , 3 ), is studied in ultraperipheral p Pb collisions at a centre-of-mass energy per nucleon pair of s NN = 5.02 TeV . The measurement is performed using the Υ ( nS ) → μ + μ - decay mode, with data collected by the CMS experiment corresponding to an integrated luminosity of 32.6 nb - 1 . Differential cross sections as functions of the Υ ( nS ) transverse momentum squared p T 2 , and rapidity y, are presented. The Υ ( 1 S ) photoproduction cross section is extracted in the rapidity range | y | < 2.2 , which corresponds to photon-proton centre-of-mass energies in the range 91 < W γ p < 826 GeV . The data are compared to theoretical predictions based on perturbative quantum chromodynamics and to previous measurements.
Energy correlators that describe energy-weighted distances between two or three particles in a hadronic jet are measured using an event sample of sqrt[s]=13 TeV proton-proton collisions collected by the CMS experiment and corresponding to an integrated luminosity of 36.3 fb^{-1}. The measured distributions are consistent with the trends in the simulation that reveal two key features of the strong interaction: confinement and asymptotic freedom. By comparing the ratio of the measured three- and two-particle energy correlator distributions with theoretical calculations that resum collinear emissions at approximate next-to-next-to-leading-logarithmic accuracy matched to a next-to-leading-order calculation, the strong coupling is determined at the Z boson mass: α_{S}(m_{Z})=0.1229_{-0.0050}^{+0.0040}, the most precise α_{S}(m_{Z}) value obtained using jet substructure observables.
We describe a method to obtain point and dispersion estimates for the energies of jets arising from b quarks produced in proton-proton collisions at an energy of s = 13 TeV at the CERN LHC. The algorithm is trained on a large sample of simulated b jets and validated on data recorded by the CMS detector in 2017 corresponding to an integrated luminosity of 41 fb - 1 . A multivariate regression algorithm based on a deep feed-forward neural network employs jet composition and shape information, and the properties of reconstructed secondary vertices associated with the jet. The results of the algorithm are used to improve the sensitivity of analyses that make use of b jets in the final state, such as the observation of Higgs boson decay to b b ¯ .
The nuclear modification factors of J / ψ and ψ (2S) mesons are measured in PbPb collisions at a centre-of-mass energy per nucleon pair of s NN = 5.02 TeV . The analysis is based on PbPb and p p data samples collected by CMS at the LHC in 2015, corresponding to integrated luminosities of 464 μ b - 1 and 28 pb -1 , respectively. The measurements are performed in the dimuon rapidity range of | y | < 2.4 as a function of centrality, rapidity, and transverse momentum ( p T ) from p T = 3 GeV / c in the most forward region and up to 50 GeV / c . Both prompt and nonprompt (coming from b hadron decays) J / ψ mesons are observed to be increasingly suppressed with centrality, with a magnitude similar to the one observed at s NN = 2.76 TeV for the two J / ψ meson components. No dependence on rapidity is observed for either prompt or nonprompt J / ψ mesons. An indication of a lower prompt J / ψ meson suppression at p T > 25 GeV / c is seen with respect to that observed at intermediate p T . The prompt ψ (2S) meson yield is found to be more suppressed than that of the prompt J / ψ mesons in the entire p T range.
The first evidence for the Higgs boson decay to a Z boson and a photon is presented, with a statistical significance of 3.4 standard deviations. The result is derived from a combined analysis of the searches performed by the ATLAS and CMS Collaborations with proton-proton collision datasets collected at the CERN Large Hadron Collider (LHC) from 2015 to 2018. These correspond to integrated luminosities of around 140 fb^{-1} for each experiment, at a center-of-mass energy of 13 TeV. The measured signal yield is 2.2±0.7 times the standard model prediction, and agrees with the theoretical expectation within 1.9 standard deviations.
A combination of fifteen top quark mass measurements performed by the ATLAS and CMS experiments at the LHC is presented. The datasets used correspond to an integrated luminosity of up to 5 and 20 fb^{-1} of proton-proton collisions at center-of-mass energies of 7 and 8 TeV, respectively. The combination includes measurements in top quark pair events that exploit both the semileptonic and hadronic decays of the top quark, and a measurement using events enriched in single top quark production via the electroweak t channel. The combination accounts for the correlations between measurements and achieves an improvement in the total uncertainty of 31% relative to the most precise input measurement. The result is m_{t}=172.52±0.14(stat)±0.30(syst) GeV, with a total uncertainty of 0.33 GeV.