Displaying publications 201 - 220 of 435 in total

Abstract:
Sort:
  1. Low WS, Wan Abas WA
    Biomed Res Int, 2015;2015:239362.
    PMID: 25977918 DOI: 10.1155/2015/239362
    Circulating tumor cells (CTCs) are tumor cells that have detached from primary tumor site and are transported via the circulation system. The importance of CTCs as prognostic biomarker is leveraged when multiple studies found that patient with cutoff of 5 CTCs per 7.5 mL blood has poor survival rate. Despite its clinical relevance, the isolation and characterization of CTCs can be quite challenging due to their large morphological variability and the rare presence of CTCs within the blood. Numerous methods have been employed and discussed in the literature for CTCs separation. In this paper, we will focus on label free CTCs isolation methods, in which the biophysical and biomechanical properties of cells (e.g., size, deformability, and electricity) are exploited for CTCs detection. To assess the present state of various isolation methods, key performance metrics such as capture efficiency, cell viability, and throughput will be reported. Finally, we discuss the challenges and future perspectives of CTC isolation technologies.
  2. Khalil MI, Tanvir EM, Afroz R, Sulaiman SA, Gan SH
    Biomed Res Int, 2015;2015:286051.
    PMID: 26064893 DOI: 10.1155/2015/286051
    The present study was designed to investigate the cardioprotective effects of Malaysian Tualang honey against isoproterenol- (ISO-) induced myocardial infarction (MI) in rats by investigating changes in the levels of cardiac marker enzymes, cardiac troponin I (cTnI), triglycerides (TG), total cholesterol (TC), lipid peroxidation (LPO) products, and antioxidant defense system combined with histopathological examination. Male albino Wistar rats (n = 40) were pretreated orally with Tualang honey (3 g/kg/day) for 45 days. Subcutaneous injection of ISO (85 mg/kg in saline) for two consecutive days caused a significant increase in serum cardiac marker enzymes (creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), and aspartate transaminase (AST)), cTnI, serum TC, and TG levels. In addition, ISO-induced myocardial injury was confirmed by a significant increase in heart lipid peroxidation (LPO) products (TBARS) and a significant decrease in antioxidant enzymes (SOD, GPx, GRx, and GST). Pretreatment of ischemic rats with Tualang honey conferred significant protective effects on all of the investigated biochemical parameters. The biochemical findings were further confirmed by histopathological examination in both Tualang-honey-pretreated and ISO-treated hearts. The present study demonstrates that Tualang honey confers cardioprotective effects on ISO-induced oxidative stress by contributing to endogenous antioxidant enzyme activity via inhibition of lipid peroxidation.
  3. Khorasani Esmaeili A, Mat Taha R, Mohajer S, Banisalam B
    Biomed Res Int, 2015;2015:643285.
    PMID: 26064936 DOI: 10.1155/2015/643285
    In the present study the extracts of in vivo and in vitro grown plants as well as callus tissue of red clover were tested for their antioxidant activities, using different extraction solvent and different antioxidant assays. The total flavonoid and phenolic contents as well as extraction yield of the extracts were also investigated to determine their correlation with the antioxidant activity of the extracts. Among all the tested extracts the highest amounts of total phenolic and total flavonoids content were found in methanol extract of in vivo grown plants. The antioxidant activity of tested samples followed the order in vivo plant extract > callus extract > in vitro extract. The highest reducing power, 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging, and chelating power were found in methanol extracts of in vivo grown red clover, while the chloroform fraction of in vivo grown plants showed the highest 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, superoxide anion radical scavenging and hydrogen peroxide scavenging compared to the other tested extracts. A significant correlation was found between the antioxidant activity of extracts and their total phenolic and total flavonoid content. According to the findings, the extract of in vitro culture of red clover especially the callus tissue possesses a comparable antioxidant activity to the in vivo cultured plants' extract.
  4. Suhaimi NF, Jalaludin J
    Biomed Res Int, 2015;2015:962853.
    PMID: 25984536 DOI: 10.1155/2015/962853
    Some of the environmental toxicants from air pollution include particulate matter (PM10), fine particulate matter (PM2.5), and ultrafine particles (UFP). Both short- and long-term exposure could result in various degrees of respiratory health outcomes among exposed persons, which rely on the individuals' health status.

    METHODS: In this paper, we highlight a review of the studies that have used biomarkers to understand the association between air particles exposure and the development of respiratory problems resulting from the damage in the respiratory system. Data from previous epidemiological studies relevant to the application of biomarkers in respiratory system damage reported from exposure to air particles are also summarized.

    RESULTS: Based on these analyses, the findings agree with the hypothesis that biomarkers are relevant in linking harmful air particles concentrations to increased respiratory health effects. Biomarkers are used in epidemiological studies to provide an understanding of the mechanisms that follow airborne particles exposure in the airway. However, application of biomarkers in epidemiological studies of health effects caused by air particles in both environmental and occupational health is inchoate.

    CONCLUSION: Biomarkers unravel the complexity of the connection between exposure to air particles and respiratory health.

  5. Rawi NA, Jalaludin J, Chua PC
    Biomed Res Int, 2015;2015:248178.
    PMID: 25984527 DOI: 10.1155/2015/248178
    Indoor air quality (IAQ) has been the object of several studies due to its adverse health effects on children. Methods. A cross-sectional comparative study was carried out among Malay children in Balakong (2 studied preschools) and Bangi (2 comparative preschools), Selangor, with the aims of determining IAQ and its association with respiratory health. 61 and 50 children aged 5-6 years were selected as studied and comparative groups. A questionnaire was used to obtain an exposure history and respiratory symptoms. Lung function test was carried out. IAQ parameters obtained include indoor concentration of particulate matter (PM), volatile organic compounds (VOCs), carbon monoxide (CO), carbon dioxide (CO2), temperature, air velocity (AV), and relative humidity. Results. There was a significant difference between IAQ in studied and comparative preschools for all parameters measured (P < 0.001) except for CO2 and AV. Studied preschools had higher PM and CO concentration. FVC, FEV1, FVC% and FEV1% predicted values were significantly lower among studied group. Exposures to PM, VOCs, and CO were associated with wheezing. Conclusion. The finding concluded that exposures to poor IAQ might increase the risk of getting lung function abnormality and respiratory problems among study respondents.
  6. Tuhina-Khatun M, Hanafi MM, Rafii Yusop M, Wong MY, Salleh FM, Ferdous J
    Biomed Res Int, 2015;2015:290861.
    PMID: 26258135 DOI: 10.1155/2015/290861
    Upland rice is important for sustainable crop production to meet future food demands. The expansion in area of irrigated rice faces limitations due to water scarcity resulting from climate change. Therefore, this research aimed to identify potential genotypes and suitable traits of upland rice germplasm for breeding programmes. Forty-three genotypes were evaluated in a randomised complete block design with three replications. All genotypes exhibited a wide and significant variation for 22 traits. The highest phenotypic and genotypic coefficient of variation was recorded for the number of filled grains/panicle and yields/plant (g). The highest heritability was found for photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO₂, and number of filled grains/panicle and yields/plant (g). Cluster analysis based on 22 traits grouped the 43 rice genotypes into five clusters. Cluster II was the largest and consisted of 20 genotypes mostly originating from the Philippines. The first four principle components of 22 traits accounted for about 72% of the total variation and indicated a wide variation among the genotypes. The selected best trait of the number of filled grains/panicle and yields/plant (g), which showed high heritability and high genetic advance, could be used as a selection criterion for hybridisation programmes in the future.
  7. Hwang CF, Chen Y, Lin HC, Narayanan P, Oh SH, Truy E
    Biomed Res Int, 2015;2015:683967.
    PMID: 26240825 DOI: 10.1155/2015/683967
  8. Anbu P, Gopinath SC, Chaulagain BP, Tang TH, Citartan M
    Biomed Res Int, 2015;2015:816419.
    PMID: 26161416 DOI: 10.1155/2015/816419
  9. Talebi AF, Tohidfar M, Mousavi Derazmahalleh SM, Sulaiman A, Baharuddin AS, Tabatabaei M
    Biomed Res Int, 2015;2015:597198.
    PMID: 26146623 DOI: 10.1155/2015/597198
    Exploitation of renewable sources of energy such as algal biodiesel could turn energy supplies problem around. Studies on a locally isolated strain of Dunaliella sp. showed that the mean lipid content in cultures enriched by 200 mg L(-1) myoinositol was raised by around 33% (1.5 times higher than the control). Similarly, higher lipid productivity values were achieved in cultures treated by 100 and 200 mg L(-1) myoinositol. Fluorometry analyses (microplate fluorescence and flow cytometry) revealed increased oil accumulation in the Nile red-stained algal samples. Moreover, it was predicted that biodiesel produced from myoinositol-treated cells possessed improved oxidative stability, cetane number, and cloud point values. From the genomic point of view, real-time analyses revealed that myoinositol negatively influenced transcript abundance of AccD gene (one of the key genes involved in lipid production pathway) due to feedback inhibition and that its positive effect must have been exerted through other genes. The findings of the current research are not to interprete that myoinositol supplementation could answer all the challenges faced in microalgal biodiesel production but instead to show that "there is a there there" for biochemical modulation strategies, which we achieved, increased algal oil quantity and enhanced resultant biodiesel quality.
  10. Mamikutty N, Thent ZC, Haji Suhaimi F
    Biomed Res Int, 2015;2015:895961.
    PMID: 26273656 DOI: 10.1155/2015/895961
    BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is one of the complications of the metabolic syndrome. It encompasses a wide range of disease spectrum from simple steatosis to liver cirrhosis. Structural alteration of hepatic mitochondria might be involved in the pathogenesis of NAFLD.

    AIMS: In the present study, we used a newly established model of fructose-induced metabolic syndrome in male Wistar rats in order to investigate the ultrastructural changes in hepatic mitochondria that occur with fructose consumption and their association with NAFLD pathogenesis.

    METHODS: The concentration of fructose-drinking water (FDW) used in this study was 20%. Six male Wistar rats were supplemented with FDW 20% for eight weeks. Body composition and metabolic parameters were measured before and after 8 weeks of FDW 20%. Histomorphology of the liver was evaluated and ultrastructural changes of mitochondria were assessed with transmission electron micrograph.

    RESULTS: After 8 weeks of fructose consumption, the animals developed several features of the metabolic syndrome. Moreover, fructose consumption led to the development of macrovesicular hepatic steatosis and mitochondrial ultrastructural changes, such as increase in mitochondrial size, disruption of the cristae, and reduction of matrix density.

    CONCLUSION: We conclude that in male Wistar rat 8-week consumption of FDW 20% leads to NAFLD likely via mitochondrial structural alteration.

  11. Lee LP, Karbul HM, Citartan M, Gopinath SC, Lakshmipriya T, Tang TH
    Biomed Res Int, 2015;2015:820575.
    PMID: 26180812 DOI: 10.1155/2015/820575
    Lipases are of great interest for different industrial applications due to their diversity and versatility. Among different lipases, microbial lipases are preferable due to their broad substrate specificity, and higher stability with lower production costs compared to the lipases from plants and animals. In the past, a vast number of bacterial species have been reported as potential lipases producers. In this study, the lipases-producing bacterial species were isolated from an oil spillage area in the conventional night market. Isolated species were identified as Bacillus species by biochemical tests which indicate their predominant establishment, and further screened on the agar solid surfaces using lipid and gelatin as the substrates. Out of the ten strains tested, four potential strains were subjected to comparison analysis of the lipolytic versus proteolytic activities. Strain 10 exhibited the highest lipolytic and proteolytic activity. In all the strains, the proteolytic activity is higher than the lipolytic activity except for strain 8, suggesting the possibility for substrate-based extracellular gene induction. The simultaneous secretion of both the lipase and protease is a mean of survival. The isolated bacterial species which harbour both lipase and protease enzymes could render potential industrial-based applications and solve environmental issues.
  12. Gopinath SC, Anbu P, Lakshmipriya T, Tang TH, Chen Y, Hashim U, et al.
    Biomed Res Int, 2015;2015:140726.
    PMID: 26180780 DOI: 10.1155/2015/140726
    Keratinases are proteolytic enzymes predominantly active when keratin substrates are available that attack disulfide bridges in the keratin to convert them from complex to simplified forms. Keratinases are essential in preparation of animal nutrients, protein supplements, leather manufacture, textile processing, detergent formulation, feather meal processing for feed and fertilizer, the pharmaceutical and biomedical industries, and waste management. Accordingly, it is necessary to develop a method for continuous production of keratinase from reliable sources that can be easily managed. Microbial keratinase is less expensive than conventionally produced keratinase and can be obtained from fungi, bacteria, and actinomycetes. In this overview, the expansion of information about microbial keratinases and important considerations in keratinase production are discussed.
  13. Gandhi S, Salleh AB, Rahman RN, Chor Leow T, Oslan SN
    Biomed Res Int, 2015;2015:529059.
    PMID: 26090417 DOI: 10.1155/2015/529059
    Geobacillus stearothermophilus SR74 is a locally isolated thermophilic bacteria producing thermostable and thermoactive α-amylase. Increased production and commercialization of thermostable α-amylase strongly warrant the need of a suitable expression system. In this study, the gene encoding the thermostable α-amylase in G. stearothermophilus SR74 was amplified, sequenced, and subcloned into P. pastoris GS115 strain under the control of a methanol inducible promoter, alcohol oxidase (AOX). Methanol induced recombinant expression and secretion of the protein resulted in high levels of extracellular amylase production. YPTM medium supplemented with methanol (1% v/v) was the best medium and once optimized, the maximum recombinant α-amylase SR74 achieved in shake flask was 28.6 U mL(-1) at 120 h after induction. The recombinant 59 kDa α-amylase SR74 was purified 1.9-fold using affinity chromatography with a product yield of 52.6% and a specific activity of 151.8 U mg(-1). The optimum pH of α-amylase SR74 was 7.0 and the enzyme was stable between pH 6.0-8.0. The purified enzyme was thermostable and thermoactive, exhibiting maximum activity at 65°C with a half-life (t₁/₂) of 88 min at 60°C. In conclusion, thermostable α-amylase SR74 from G. stearothermophilus SR74 would be beneficial for industrial applications, especially in liquefying saccrification.
  14. Hsu PI, Yamaoka Y, Goh KL, Manfredi M, Wu DC, Mahachai V
    Biomed Res Int, 2015;2015:278308.
    PMID: 26078943 DOI: 10.1155/2015/278308
  15. Mohamed MI, Mohammad MK, Abdul Razak HR, Abdul Razak K, Saad WM
    Biomed Res Int, 2015;2015:183525.
    PMID: 26075217 DOI: 10.1155/2015/183525
    Emerging syntheses and findings of new metallic nanoparticles (MNPs) have become an important aspect in various fields including diagnostic imaging. To date, iodine has been utilized as a radiographic contrast medium. However, the raise concern of iodine threats on iodine-intolerance patient has led to search of new contrast media with lower toxic level. In this animal modeling study, 14 nm iron oxide nanoparticles (IONPs) with silane-polyethylene glycol (SiPEG) and perchloric acid have been assessed for toxicity level as compared to conventional iodine. The nanotoxicity of IONPs was evaluated in liver biochemistry, reactive oxygen species production (ROS), lipid peroxidation mechanism, and ultrastructural evaluation using transmission electron microscope (TEM). The hematological analysis and liver function test (LFT) revealed that most of the liver enzymes were significantly higher in iodine-administered group as compared to those in normal and IONPs groups (P < 0.05). ROS production assay and lipid peroxidation indicator, malondialdehyde (MDA), also showed significant reductions in comparison with iodine group (P < 0.05). TEM evaluation yielded the aberration of nucleus structure of iodine-administered group as compared to those in control and IONPs groups. This study has demonstrated the less toxic properties of IONPs and it may postulate that IONPs are safe to be applied as radiographic contrast medium.
  16. Kaka U, Chen HC, Goh YM, Abubakar AA, Fakurazi S, Ebrahimi M
    Biomed Res Int, 2015;2015:375421.
    PMID: 26075236 DOI: 10.1155/2015/375421
    This study was conducted to validate the use of a modified algometer device to measure mechanical nociceptive thresholds in six dogs. Dogs were administered morphine intravenously (IV) at 1 mg/kg or saline at equivolume in a crossover design with one-week washout period. Mechanical nociceptive thresholds were determined before, after the administration of treatments at 5 minutes, and hourly for 8 hours. Thresholds were recorded at the carpal pad, metacarpal foot pad, tibia, femur, and abdomen. Heart rates, body temperature, and respiration were recorded at similar time points. Thresholds increased significantly (P < 0.05) from baseline values for up to 3 hours at tibia and abdomen, 4 hours at metacarpal pad, and 5 hours at the carpal pad and femur. Hypothermia, bradycardia, and change in respiration were observed in all dogs after morphine injection. Saline did not alter any threshold levels during the eight-hour study period, indicating no evidence of tolerance, learned avoidance, or local hyperaesthesia. The device and methods of testing were well tolerated by all the dogs. Results suggest that the modified algometer and method of application are useful to measure nociceptive mechanical thresholds in awake dogs.
  17. Ngai SC, Rosli R, Al Abbar A, Abdullah S
    Biomed Res Int, 2015;2015:346134.
    PMID: 25961011 DOI: 10.1155/2015/346134
    Stable introduction of a functional gene in hematopoietic progenitor cells (HPCs) has appeared to be an alternative approach to correct genetically linked blood diseases. However, it is still unclear whether lentiviral vector (LV) is subjected to gene silencing in HPCs. Here, we show that LV carrying green fluorescent protein (GFP) reporter gene driven by cytomegalovirus (CMV) promoter was subjected to transgene silencing after transduction into HPCs. This phenomenon was not due to the deletion of proviral copy number. Study using DNA demethylating agent and histone deacetylase (HDAC) inhibitor showed that the drugs could either prevent or reverse the silencing effect. Using sodium bisulfite sequencing and chromatin immunoprecipitation (ChIP) assay, we demonstrated that DNA methylation occurred soon after LV transduction. At the highest level of gene expression, CMV promoter was acetylated and was in a euchromatin state, while GFP reporter gene was acetylated but was strangely in a heterochromatin state. When the expression declined, CMV promoter underwent transition from acetylated and euchromatic state to a heterochromatic state, while the GFP reporter gene was in deacetylated and heterochromatic state. With these, we verify that DNA methylation and dynamic histone modifications lead to transgene silencing in HPCs transduced with LV.
  18. Vazifehkhah Ghaffari B, Kouhnavard M, Aihara T, Kitajima T
    Biomed Res Int, 2015;2015:135787.
    PMID: 25960999 DOI: 10.1155/2015/135787
    Various types of neurons exhibit subthreshold resonance oscillation (preferred frequency response) to fluctuating sinusoidal input currents. This phenomenon is well known to influence the synaptic plasticity and frequency of neural network oscillation. This study evaluates the resonant properties of pacemaker pyloric dilator (PD) neurons in the central pattern generator network through mathematical modeling. From the pharmacological point of view, calcium currents cannot be blocked in PD neurons without removing the calcium-dependent potassium current. Thus, the effects of calcium (I(Ca)) and calcium-dependent potassium (I(KCa)) currents on resonant properties remain unclear. By taking advantage of Hodgkin-Huxley-type model of neuron and its equivalent RLC circuit, we examine the effects of changing resting membrane potential and those ionic currents on the resonance. Results show that changing the resting membrane potential influences the amplitude and frequency of resonance so that the strength of resonance (Q-value) increases by both depolarization and hyperpolarization of the resting membrane potential. Moreover, hyperpolarization-activated inward current (I(h)) and I(Ca) (in association with I(KCa)) are dominant factors on resonant properties at hyperpolarized and depolarized potentials, respectively. Through mathematical analysis, results indicate that I h and I(KCa) affect the resonant properties of PD neurons. However, I(Ca) only has an amplifying effect on the resonance amplitude of these neurons.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links