Displaying publications 221 - 240 of 264 in total

Abstract:
Sort:
  1. Soares PA, Trejaut JA, Rito T, Cavadas B, Hill C, Eng KK, et al.
    Hum Genet, 2016 Mar;135(3):309-26.
    PMID: 26781090 DOI: 10.1007/s00439-015-1620-z
    There are two very different interpretations of the prehistory of Island Southeast Asia (ISEA), with genetic evidence invoked in support of both. The "out-of-Taiwan" model proposes a major Late Holocene expansion of Neolithic Austronesian speakers from Taiwan. An alternative, proposing that Late Glacial/postglacial sea-level rises triggered largely autochthonous dispersals, accounts for some otherwise enigmatic genetic patterns, but fails to explain the Austronesian language dispersal. Combining mitochondrial DNA (mtDNA), Y-chromosome and genome-wide data, we performed the most comprehensive analysis of the region to date, obtaining highly consistent results across all three systems and allowing us to reconcile the models. We infer a primarily common ancestry for Taiwan/ISEA populations established before the Neolithic, but also detected clear signals of two minor Late Holocene migrations, probably representing Neolithic input from both Mainland Southeast Asia and South China, via Taiwan. This latter may therefore have mediated the Austronesian language dispersal, implying small-scale migration and language shift rather than large-scale expansion.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
  2. Ewart KM, Lightson AL, Sitam FT, Rovie-Ryan JJ, Mather N, McEwing R
    Forensic Sci Int Genet, 2020 01;44:102187.
    PMID: 31670244 DOI: 10.1016/j.fsigen.2019.102187
    The illegal ivory trade continues to drive elephant poaching. Large ivory seizures in Africa and Asia are still commonplace. Wildlife forensics is recognised as a key enforcement tool to combat this trade. However, the time and resources required to effectively test large ivory seizures is often prohibitive. This limits or delays testing, which may impede investigations and/or prosecutions. Typically, DNA analysis of an ivory seizure involves pairing and sorting the tusks, sampling the tusks, powdering the sample, decalcification, then DNA extraction. Here, we optimize the most time-consuming components of this process: sampling and decalcification. Firstly, using simulations, we demonstrate that tusks do not need to be paired to ensure an adequate number of unique elephants are sampled in a large seizure. Secondly, we determined that directly powdering the ivory using a Dremel drill with a high-speed cutter bit, instead of cutting the ivory with a circular saw and subsequently powdering the sample in liquid nitrogen with a freezer mill, produces comparable results. Finally, we optimized a rapid 2 -h decalcification protocol that produces comparable results to a standard 3-day protocol. We tested/optimised the protocols on 33 raw and worked ivory samples, and demonstrated their utility on a case study, successfully identifying 94% of samples taken from 123 tusks. Using these new rapid protocols, the entire sampling and DNA extraction process takes less than one day and requires less-expensive equipment. We expect that the implementation of these rapid protocols will promote more consistent and timely testing of ivory seizures suitable for enforcement action.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  3. Chao LL, Wu WJ, Shih CM
    Exp Appl Acarol, 2009 Aug;48(4):329-44.
    PMID: 19184580 DOI: 10.1007/s10493-009-9244-4
    The genetic identity of Ixodes granulatus ticks was determined for the first time in Taiwan. The phylogenetic relationships were analyzed by comparing the sequences of mitochondrial 16S ribosomal DNA gene obtained from 19 strains of ticks representing seven species of Ixodes and two outgroup species (Rhipicephalus sanguineus and Haemaphysalis inermis). Four major clades could be easily distinguished by neighbour-joining analysis and were congruent by maximum-parsimony method. All these I. granulatus ticks of Taiwan were genetically affiliated to a monophyletic group with highly homogeneous sequences (92.2-99.3% similarity), and can be discriminated from other Ixodes species and other genera of ticks with a sequence divergence ranging from 11.7 to 30.8%. Moreover, intraspecific analysis revealed that two distinct lineages are evident between the same species of I. granulatus ticks collected from Taiwan and Malaysia. Our results demonstrate that all these I. granulatus ticks of Taiwan represent a unique lineage distinct from the common vector ticks (I. ricinus complex) for Borrelia burgdorferi spirochetes.
    Matched MeSH terms: DNA, Mitochondrial/chemistry
  4. Anderson DL, Trueman JW
    Exp Appl Acarol, 2000 Mar;24(3):165-89.
    PMID: 11108385
    Varroa jacobsoni was first described as a natural ectoparasitic mite of the Eastern honeybee (Apis cerana) throughout Asia. It later switched host to the Western honeybee (A. mellifera) and has now become a serious pest of that bee worldwide. The studies reported here on genotypic, phenotypic and reproductive variation among V. jacobsoni infesting A. cerana throughout Asia demonstrate that V. jacobsoni is a complex of at least two different species. In a new classification V. jacobsoni is here redefined as encompassing nine haplotypes (mites with distinct mtDNA CO-I gene sequences) that infest A. cerana in the Malaysia Indonesia region. Included is a Java haplotype, specimens of which were used to first describe V. jacobsoni at the beginning of this century. A new name, V. destructor n. sp., is given to six haplotypes that infest A. cerana on mainland Asia. Adult females of V. destructor are significantly larger and less spherical in shape than females of V. jacobsoni and they are also reproductively isolated from females of V. jacobsoni. The taxonomic positions of a further three unique haplotypes that infest A. cerana in the Philippines is uncertain and requires further study. Other studies reported here also show that only two of the 18 different haplotypes concealed within the complex of mites infesting A. cerana have become pests of A. mellifera worldwide. Both belong to V. destructor, and they are not V. jacobsoni. The most common is a Korea haplotype, so-called because it was also found parasitizing A. cerana in South Korea. It was identified on A. mellifera in Europe, the Middle East, Africa, Asia, and the Americas. Less common is a Japan/Thailand haplotype, so-called because it was also found parasitizing A. cerana in Japan and Thailand. It was identified on A. mellifera in Japan, Thailand and the Americas. Our results imply that the findings of past research on V. jacobsoni are applicable mostly to V. destructor. Our results will also influence quarantine protocols for bee mites, and may present new strategies for mite control.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
  5. Sanders KL, Malhotra A, Thorpe RS
    J Evol Biol, 2004 Jul;17(4):721-31.
    PMID: 15271071
    We analyse molecular and phenotypic evolution in a group of taxonomically problematic Indomalayan pitvipers, the Trimeresurus sumatranus group. Mitochondrial DNA sequencing provides a well-resolved phylogeny, with each species representing a distinct lineage. Multivariate morphological analysis reveals a high level of phenotypic differentiation, which is congruent between the sexes but does not reflect phylogenetic history. An adaptive explanation for the observed pattern of differentiation is supported by independent contrasts analysis, which shows significant correlations between current ecology and the characters that most account for the variation between taxa, including those that are presently used to identify the species. Reduced precipitation and altitude, and increased temperature, are correlated with higher numbers of scales on the head, body and tail. It is hypothesized that scale number plays an important role in heat and water exchange by influencing the area of exposed of interstitial skin, and that colour pattern variation reflects selection pressures involving camouflage and thermoregulation. Ecological convergence in traits used for classification is found to have important implications for species identification where taxa are distributed over varying environments.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  6. Mohamed Yusoff AA, Mohd Khair SZN, Wan Abdullah WS, Abd Radzak SM, Abdullah JM
    J Cancer Res Ther, 2020 12 22;16(6):1517-1521.
    PMID: 33342822 DOI: 10.4103/jcrt.JCRT_1132_16
    Background and Objective: Meningiomas are among the most common intracranial tumors of the central nervous system. It is widely accepted that the initiation and progression of meningiomas involve the accumulation of nucleus genetic alterations, but little is known about the implication of mitochondrial genomic alterations during development of these tumors. The human mitochondrial DNA (mtDNA) contains a short hypervariable, noncoding displacement loop control region known as the D-Loop. Alterations in the mtDNA D-loop have been reported to occur in most types of human cancers. The purpose of this study was to assess the mtDNA D-loop mutations in Malaysian meningioma patients.

    Materials and Methods: Genomic DNA was extracted from 21 fresh-frozen tumor tissues and blood samples of the same meningioma patients. The entire mtDNA D-loop region (positions 16024-576) was polymerase chain reaction amplified using designed primers, and then amplification products were purified before the direct DNA sequencing proceeds.

    Results: Overall, 10 (47.6%) patients were detected to harbor a total of 27 somatic mtDNA D-loop mutations. Most of these mtDNA mutations were identified in the hypervariable segment II (40.7%), with 33.3% being located mainly in the conserved sequence block II of the D310 sequence. Furthermore, 58 different germline variations were observed at 21 nucleotide positions.

    Conclusion: Our results suggest that mtDNA alterations in the D-loop region may be an important and early event in developing meningioma. Further studies are needed, including validation in a larger patient cohort, to verify the clinicopathological outcomes of mtDNA mutation biomarkers in meningiomas.

    Matched MeSH terms: DNA, Mitochondrial/genetics*
  7. Kavitha R, Tan TC, Lee HL, Nazni WA, Sofian-Azirun M
    Trop Biomed, 2013 Mar;30(1):119-24.
    PMID: 23665717 MyJurnal
    Estimation of post-mortem interval (PMI) is crucial for time of death determination. The advent of DNA-based identification techniques forensic entomology saw the beginning of a proliferation of molecular studies into forensically important Calliphoridae (Diptera). The use of DNA to characterise morphologically indistinguishable immature calliphorids was recognised as a valuable molecular tool with enormous practical utility. The local entomofauna in most cases is important for the examination of entomological evidences. The survey of the local entomofauna has become a fundamental first step in forensic entomological studies, because different geographical distributions, seasonal and environmental factors may influence the decomposition process and the occurrence of different insect species on corpses. In this study, calliphorids were collected from 13 human corpses recovered from indoors, outdoors and aquatic conditions during the post-mortem examination by pathologists from the government hospitals in Malaysia. Only two species, Chrysomya megacephala and Chrysomya rufifacies were recovered from human corpses. DNA sequencing was performed to study the mitochondrial encoded COI gene and to evaluate the suitability of the 1300 base pairs of COI fragments for identification of blow fly species collected from real crime scene. The COI gene from blow fly specimens were sequenced and deposited in GenBank to expand local databases. The sequenced COI gene was useful in identifying calliphorids retrieved from human corpses.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  8. Brucato N, Kusuma P, Cox MP, Pierron D, Purnomo GA, Adelaar A, et al.
    Mol Biol Evol, 2016 09;33(9):2396-400.
    PMID: 27381999 DOI: 10.1093/molbev/msw117
    Malagasy genetic diversity results from an exceptional protoglobalization process that took place over a thousand years ago across the Indian Ocean. Previous efforts to locate the Asian origin of Malagasy highlighted Borneo broadly as a potential source, but so far no firm source populations were identified. Here, we have generated genome-wide data from two Southeast Borneo populations, the Banjar and the Ngaju, together with published data from populations across the Indian Ocean region. We find strong support for an origin of the Asian ancestry of Malagasy among the Banjar. This group emerged from the long-standing presence of a Malay Empire trading post in Southeast Borneo, which favored admixture between the Malay and an autochthonous Borneo group, the Ma'anyan. Reconciling genetic, historical, and linguistic data, we show that the Banjar, in Malay-led voyages, were the most probable Asian source among the analyzed groups in the founding of the Malagasy gene pool.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  9. Yeap BK, Othman AS, Lee VS, Lee CY
    J Econ Entomol, 2007 Apr;100(2):467-74.
    PMID: 17461072
    The phylogenetic relationship of Coptotermes gestroi (Wasmann) and Coptotermes vastator Light (Isoptera: Rhinotermitidae) was determined using DNA sequence comparisons of mitochondrial genes. Partial sequences of the ribosomal RNA small subunit 12S, ribosomal RNA large subunit 16S, and mitochondrial COII were obtained from nine populations of C. gestroi from South East Asia (Malaysia, Singapore, Thailand, and Indonesia) and four populations of C. vastator from the Philippines and Hawaii. In addition, four populations of Coptotermes formosanus Shiraki and Globitermes sulphureus (Haviland) were used as the outgroups. Consensus sequences were obtained and aligned. C. vastator and C. gestroi are synonymous, based on high sequence homology across the 12S, 16S, and COII genes. The interspecific pairwise sequence divergence, based on Kimura 2-parameter model between C. gestroi and C. vastator, varied only up to 0.80%. Morphometric measurements of 16 characteristics revealed numerous overlaps between the examined individuals of both species. Based on the molecular phylogenetics and morphometric data, it is proposed that C. vastator is a junior synonym of C. gestroi.
    Matched MeSH terms: DNA, Mitochondrial/chemistry
  10. Mohamed Yusoff AA, Mohd Khair SZN, Abd Radzak SM, Idris Z, Lee HC
    J Chin Med Assoc, 2020 Sep;83(9):838-844.
    PMID: 32732530 DOI: 10.1097/JCMA.0000000000000401
    BACKGROUND: The 4977-bp common deletion (mtDNA) is a well-established mitochondrial genome alteration that has been described in various types of human cancers. However, to date, no studies on mtDNA in brain tumors have been reported. The present study aimed to determine mtDNA prevalence in common brain tumors, specifically, low- and high-grade gliomas (LGGs and HGGs), and meningiomas in Malaysian cases. Its correlation with clinicopathological parameters was also evaluated.

    METHODS: A total of 50 patients with pathologically confirmed brain tumors (13 LGGs, 20 HGGs, and 17 meningiomas) were enrolled in this study. mtDNA was detected by using polymerase chain reaction (PCR) technique and later confirmed via Sanger DNA sequencing.

    RESULTS: Overall, mtDNA was observed in 16 (32%) patients and it was significantly correlated with the type of tumor group and sex, being more common in the HGG group and in male patients.

    CONCLUSION: The prevalence of mtDNA in Malaysian glioma and meningioma cases has been described for the first time and it was, indeed, comparable with previously published studies. This study provides initial insights into mtDNA in brain tumor and these findings can serve as new data for the global mitochondrial DNA mutations database.

    Matched MeSH terms: DNA, Mitochondrial/genetics*
  11. Guarini G, Kiyooka T, Ohanyan V, Pung YF, Marzilli M, Chen YR, et al.
    Basic Res Cardiol, 2016 May;111(3):29.
    PMID: 27040114 DOI: 10.1007/s00395-016-0547-4
    Mitochondrial dysfunction in obesity and diabetes can be caused by excessive production of free radicals, which can damage mitochondrial DNA. Because mitochondrial DNA plays a key role in the production of ATP necessary for cardiac work, we hypothesized that mitochondrial dysfunction, induced by mitochondrial DNA damage, uncouples coronary blood flow from cardiac work. Myocardial blood flow (contrast echocardiography) was measured in Zucker lean (ZLN) and obese fatty (ZOF) rats during increased cardiac metabolism (product of heart rate and arterial pressure, i.v. norepinephrine). In ZLN increased metabolism augmented coronary blood flow, but in ZOF metabolic hyperemia was attenuated. Mitochondrial respiration was impaired and ROS production was greater in ZOF than ZLN. These were associated with mitochondrial DNA (mtDNA) damage in ZOF. To determine if coronary metabolic dilation, the hyperemic response induced by heightened cardiac metabolism, is linked to mitochondrial function we introduced recombinant proteins (intravenously or intraperitoneally) in ZLN and ZOF to fragment or repair mtDNA, respectively. Repair of mtDNA damage restored mitochondrial function and metabolic dilation, and reduced ROS production in ZOF; whereas induction of mtDNA damage in ZLN reduced mitochondrial function, increased ROS production, and attenuated metabolic dilation. Adequate metabolic dilation was also associated with the extracellular release of ADP, ATP, and H2O2 by cardiac myocytes; whereas myocytes from rats with impaired dilation released only H2O2. In conclusion, our results suggest that mitochondrial function plays a seminal role in connecting myocardial blood flow to metabolism, and integrity of mtDNA is central to this process.
    Matched MeSH terms: DNA, Mitochondrial/metabolism*
  12. Shen KN, Chang CW, Loh KH, Chen CH, Hsiao CD
    Mitochondrial DNA A DNA Mapp Seq Anal, 2016 11;27(6):4118-4119.
    PMID: 25600747
    In this study, the complete mitogenome sequence of the Clarion angelfish, Holacanthus clarionensis (Perciformes: Pomacanthidae) has been sequenced by next-generation sequencing method. The length of the assembled mitogenome is 16,615 bp, including 13 protein coding genes, 22 transfer RNAs, and two ribosomal RNAs genes. The overall base composition of Clarion angelfish is 28.3% for A, 29.3% for C, 16.5% for G, 25.9% for T and show 85% identities to flame angelfish Centropyge loriculus. The complete mitogenome of the Clarion angelfish provides essential and important DNA molecular data for further phylogeography and evolutionary analysis for marine angelfish phylogeny.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  13. Mohd Yusoff NIS, Mat Jaafar TNA, Vilasri V, Mohd Nor SA, Seah YG, Habib A, et al.
    Sci Rep, 2021 Jun 25;11(1):13357.
    PMID: 34172804 DOI: 10.1038/s41598-021-92905-6
    Benthic species, though ecologically important, are vulnerable to genetic loss and population size reduction due to impacts from fishing trawls. An assessment of genetic diversity and population structure is therefore needed to assist in a resource management program. To address this issue, the two-spined yellowtail stargazer (Uranoscopus cognatus) was collected within selected locations in the Indo-West Pacific (IWP). The partial mitochondrial DNA cytochrome c oxidase subunit 1 and the nuclear DNA recombination activating gene 1 were sequenced. Genetic diversity analyses revealed that the populations were moderately to highly diversified (haplotype diversity, H = 0.490-0.900, nucleotide diversity, π = 0.0010-0.0034) except sampling station (ST) 1 and 14. The low diversity level, however was apparent only in the matrilineal marker (H = 0.118-0.216; π = 0.0004-0.0008), possibly due to stochastic factors or anthropogenic stressors. Population structure analyses revealed a retention of ancestral polymorphism that was likely due to incomplete lineage sorting in U. cognatus, and prolonged vicariance by the Indo-Pacific Barrier has partitioned them into separate stock units. Population segregation was also shown by the phenotypic divergence in allopatric populations, regarding the premaxillary protrusion, which is possibly associated with the mechanism for upper jaw movement in biomechanical feeding approaches. The moderate genetic diversity estimated for each region, in addition to past population expansion events, indicated that U. cognatus within the IWP was still healthy and abundant (except in ST1 and 14), and two stock units were identified to be subjected to a specific resource management program.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  14. Lee WS, Sokol RJ
    J Pediatr, 2013 Oct;163(4):942-8.
    PMID: 23810725 DOI: 10.1016/j.jpeds.2013.05.036
    Matched MeSH terms: DNA, Mitochondrial/genetics
  15. Omasanggar R, Yu CY, Ang GY, Emran NA, Kitan N, Baghawi A, et al.
    PLoS One, 2020;15(5):e0233461.
    PMID: 32442190 DOI: 10.1371/journal.pone.0233461
    Cancer development has been ascribed with diverse genetic variations which are identified in both mitochondrial and nuclear genomes. Mitochondrial DNA (mtDNA) alterations have been detected in several tumours which include lung, colorectal, renal, pancreatic and breast cancer. Several studies have explored the breast tumour-specific mtDNA alteration mainly in Western population. This study aims to identify mtDNA alterations of 20 breast cancer patients in Malaysia by next generation sequencing analysis. Twenty matched tumours with corresponding normal breast tissues were obtained from female breast cancer patients who underwent mastectomy. Total DNA was extracted from all samples and the entire mtDNA (16.6kb) was amplified using long range PCR amplification. The amplified PCR products were sequenced using mtDNA next-generation sequencing (NGS) on an Illumina Miseq platform. Sequencing involves the entire mtDNA (16.6kb) from all pairs of samples with high-coverage (~ 9,544 reads per base). MtDNA variants were called and annotated using mtDNA-Server, a web server. A total of 18 of 20 patients had at least one somatic mtDNA mutation in their tumour samples. Overall, 65 somatic mutations were identified, with 30 novel mutations. The majority (59%) of the somatic mutations were in the coding region, whereas only 11% of the mutations occurred in the D-loop. Notably, somatic mutations in protein-coding regions were non-synonymous (49%) in which 15.4% of them are potentially deleterious. A total of 753 germline mutations were identified and four of which were novel mutations. Compared to somatic alterations, less than 1% of germline missense mutations are harmful. The findings of this study may enhance the current knowledge of mtDNA alterations in breast cancer. To date, the catalogue of mutations identified in this study is the first evidence of mtDNA alterations in Malaysian female breast cancer patients.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
  16. Ambrose L, Cooper RD, Russell TL, Burkot TR, Lobo NF, Collins FH, et al.
    Int J Parasitol, 2014 Mar;44(3-4):225-33.
    PMID: 24440418 DOI: 10.1016/j.ijpara.2013.12.001
    Anopheles farauti is the primary malaria vector throughout the coastal regions of the Southwest Pacific. A shift in peak biting time from late to early in the night occurred following widespread indoor residue spraying of dichlorodiphenyltrichloro-ethane (DDT) and has persisted in some island populations despite the intervention ending decades ago. We used mitochondrial cytochrome oxidase I (COI) sequence data and 12 newly developed microsatellite markers to assess the population genetic structure of this malaria vector in the Solomon Archipelago. With geographically distinct differences in peak A. farauti night biting time observed in the Solomon Archipelago, we tested the hypothesis that strong barriers to gene flow exist in this region. Significant and often large fixation index (FST) values were found between different island populations for the mitochondrial and nuclear markers, suggesting highly restricted gene flow between islands. Some discordance in the location and strength of genetic breaks was observed between the mitochondrial and microsatellite markers. Since early night biting A. farauti individuals occur naturally in all populations, the strong gene flow barriers that we have identified in the Solomon Archipelago lend weight to the hypothesis that the shifts in peak biting time from late to early night have appeared independently in these disconnected island populations. For this reason, we suggest that insecticide impregnated bed nets and indoor residue spraying are unlikely to be effective as control tools against A. farauti occurring elsewhere, and if used, will probably result in peak biting time behavioural shifts similar to that observed in the Solomon Islands.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  17. Ballinger SW, Schurr TG, Torroni A, Gan YY, Hodge JA, Hassan K, et al.
    Genetics, 1992 Jan;130(1):139-52.
    PMID: 1346259
    Human mitochondrial DNAs (mtDNAs) from 153 independent samples encompassing seven Asian populations were surveyed for sequence variation using the polymerase chain reaction (PCR), restriction endonuclease analysis and oligonucleotide hybridization. All Asian populations were found to share two ancient AluI/DdeI polymorphisms at nps 10394 and 10397 and to be genetically similar indicating that they share a common ancestry. The greatest mtDNA diversity and the highest frequency of mtDNAs with HpaI/HincII morph 1 were observed in the Vietnamese suggesting a Southern Mongoloid origin of Asians. Remnants of the founding populations of Papua New Guinea (PNG) were found in Malaysia, and a marked frequency cline for the COII/tRNA(Lys) intergenic deletion was observed along coastal Asia. Phylogenetic analysis indicates that both insertion and deletion mutations in the COII/tRNA(Lys) region have occurred more than once.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
  18. Campa D, Barrdahl M, Santoro A, Severi G, Baglietto L, Omichessan H, et al.
    Breast Cancer Res, 2018 04 17;20(1):29.
    PMID: 29665866 DOI: 10.1186/s13058-018-0955-5
    BACKGROUND: Leukocyte telomere length (LTL) and mitochondrial genome (mtDNA) copy number and deletions have been proposed as risk markers for various cancer types, including breast cancer (BC).

    METHODS: To gain a more comprehensive picture on how these markers can modulate BC risk, alone or in conjunction, we performed simultaneous measurements of LTL and mtDNA copy number in up to 570 BC cases and 538 controls from the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. As a first step, we measured LTL and mtDNA copy number in 96 individuals for which a blood sample had been collected twice with an interval of 15 years.

    RESULTS: According to the intraclass correlation (ICC), we found very good stability over the time period for both measurements, with ICCs of 0.63 for LTL and 0.60 for mtDNA copy number. In the analysis of the entire study sample, we observed that longer LTL was strongly associated with increased risk of BC (OR 2.71, 95% CI 1.58-4.65, p = 3.07 × 10- 4 for highest vs. lowest quartile; OR 3.20, 95% CI 1.57-6.55, p = 1.41 × 10- 3 as a continuous variable). We did not find any association between mtDNA copy number and BC risk; however, when considering only the functional copies, we observed an increased risk of developing estrogen receptor-positive BC (OR 2.47, 95% CI 1.05-5.80, p = 0.04 for highest vs. lowest quartile).

    CONCLUSIONS: We observed a very good correlation between the markers over a period of 15 years. We confirm a role of LTL in BC carcinogenesis and suggest an effect of mtDNA copy number on BC risk.

    Matched MeSH terms: DNA, Mitochondrial/genetics*
  19. Lee KS, Divis PC, Zakaria SK, Matusop A, Julin RA, Conway DJ, et al.
    PLoS Pathog, 2011 Apr;7(4):e1002015.
    PMID: 21490952 DOI: 10.1371/journal.ppat.1002015
    Plasmodium knowlesi, a malaria parasite originally thought to be restricted to macaques in Southeast Asia, has recently been recognized as a significant cause of human malaria. Unlike the benign and morphologically similar P. malariae, these parasites can lead to fatal infections. Malaria parasites, including P. knowlesi, have not yet been detected in macaques of the Kapit Division of Malaysian Borneo, where the majority of human knowlesi malaria cases have been reported. In order to extend our understanding of the epidemiology and evolutionary history of P. knowlesi, we examined 108 wild macaques for malaria parasites and sequenced the circumsporozoite protein (csp) gene and mitochondrial (mt) DNA of P. knowlesi isolates derived from macaques and humans. We detected five species of Plasmodium (P. knowlesi, P. inui, P. cynomolgi, P. fieldi and P. coatneyi) in the long-tailed and pig-tailed macaques, and an extremely high prevalence of P. inui and P. knowlesi. Macaques had a higher number of P. knowlesi genotypes per infection than humans, and some diverse alleles of the P. knowlesi csp gene and certain mtDNA haplotypes were shared between both hosts. Analyses of DNA sequence data indicate that there are no mtDNA lineages associated exclusively with either host. Furthermore, our analyses of the mtDNA data reveal that P. knowlesi is derived from an ancestral parasite population that existed prior to human settlement in Southeast Asia, and underwent significant population expansion approximately 30,000-40,000 years ago. Our results indicate that human infections with P. knowlesi are not newly emergent in Southeast Asia and that knowlesi malaria is primarily a zoonosis with wild macaques as the reservoir hosts. However, ongoing ecological changes resulting from deforestation, with an associated increase in the human population, could enable this pathogenic species of Plasmodium to switch to humans as the preferred host.
    Matched MeSH terms: DNA, Mitochondrial/genetics; DNA, Mitochondrial/isolation & purification
  20. Yu EPK, Reinhold J, Yu H, Starks L, Uryga AK, Foote K, et al.
    Arterioscler Thromb Vasc Biol, 2017 12;37(12):2322-2332.
    PMID: 28970293 DOI: 10.1161/ATVBAHA.117.310042
    OBJECTIVE: Mitochondrial DNA (mtDNA) damage is present in murine and human atherosclerotic plaques. However, whether endogenous levels of mtDNA damage are sufficient to cause mitochondrial dysfunction and whether decreasing mtDNA damage and improving mitochondrial respiration affects plaque burden or composition are unclear. We examined mitochondrial respiration in human atherosclerotic plaques and whether augmenting mitochondrial respiration affects atherogenesis.

    APPROACH AND RESULTS: Human atherosclerotic plaques showed marked mitochondrial dysfunction, manifested as reduced mtDNA copy number and oxygen consumption rate in fibrous cap and core regions. Vascular smooth muscle cells derived from plaques showed impaired mitochondrial respiration, reduced complex I expression, and increased mitophagy, which was induced by oxidized low-density lipoprotein. Apolipoprotein E-deficient (ApoE-/-) mice showed decreased mtDNA integrity and mitochondrial respiration, associated with increased mitochondrial reactive oxygen species. To determine whether alleviating mtDNA damage and increasing mitochondrial respiration affects atherogenesis, we studied ApoE-/- mice overexpressing the mitochondrial helicase Twinkle (Tw+/ApoE-/-). Tw+/ApoE-/- mice showed increased mtDNA integrity, copy number, respiratory complex abundance, and respiration. Tw+/ApoE-/- mice had decreased necrotic core and increased fibrous cap areas, and Tw+/ApoE-/- bone marrow transplantation also reduced core areas. Twinkle increased vascular smooth muscle cell mtDNA integrity and respiration. Twinkle also promoted vascular smooth muscle cell proliferation and protected both vascular smooth muscle cells and macrophages from oxidative stress-induced apoptosis.

    CONCLUSIONS: Endogenous mtDNA damage in mouse and human atherosclerosis is associated with significantly reduced mitochondrial respiration. Reducing mtDNA damage and increasing mitochondrial respiration decrease necrotic core and increase fibrous cap areas independently of changes in reactive oxygen species and may be a promising therapeutic strategy in atherosclerosis.

    Matched MeSH terms: DNA, Mitochondrial/genetics; DNA, Mitochondrial/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links