Displaying publications 221 - 240 of 329 in total

Abstract:
Sort:
  1. Bittleston LS, Wolock CJ, Yahya BE, Chan XY, Chan KG, Pierce NE, et al.
    Elife, 2018 08 28;7.
    PMID: 30152327 DOI: 10.7554/eLife.36741
    The 'pitchers' of carnivorous pitcher plants are exquisite examples of convergent evolution. An open question is whether the living communities housed in pitchers also converge in structure or function. Using samples from more than 330 field-collected pitchers of eight species of Southeast Asian Nepenthes and six species of North American Sarracenia, we demonstrate that the pitcher microcosms, or miniature ecosystems with complex communities, are strikingly similar. Compared to communities from surrounding habitats, pitcher communities house fewer species. While communities associated with the two genera contain different microbial organisms and arthropods, the species are predominantly from the same phylogenetic clades. Microbiomes from both genera are enriched in degradation pathways and have high abundances of key degradation enzymes. Moreover, in a manipulative field experiment, Nepenthes pitchers placed in a North American bog assembled Sarracenia-like communities. An understanding of the convergent interactions in pitcher microcosms facilitates identification of selective pressures shaping the communities.
    Matched MeSH terms: Geography
  2. Luskin MS, Albert WR, Tobler MW
    Nat Commun, 2017 12 05;8(1):1783.
    PMID: 29208916 DOI: 10.1038/s41467-017-01656-4
    The continuing development of improved capture-recapture (CR) modeling techniques used to study apex predators has also limited robust temporal and cross-site analyses due to different methods employed. We develop an approach to standardize older non-spatial CR and newer spatial CR density estimates and examine trends for critically endangered Sumatran tigers (Panthera tigris sumatrae) using a meta-regression of 17 existing densities and new estimates from our own fieldwork. We find that tiger densities were 47% higher in primary versus degraded forests and, unexpectedly, increased 4.9% per yr from 1996 to 2014, likely indicating a recovery from earlier poaching. However, while tiger numbers may have temporarily risen, the total potential island-wide population declined by 16.6% from 2000 to 2012 due to forest loss and degradation and subpopulations are significantly more fragmented. Thus, despite increasing densities in smaller parks, we conclude that there are only two robust populations left with >30 breeding females, indicating Sumatran tigers still face a high risk of extinction unless deforestation can be controlled.
    Matched MeSH terms: Geography
  3. Ramdzan AR, Ismail A, Mohd Zanib ZS
    Int J Infect Dis, 2019 Nov 27;91:68-72.
    PMID: 31785400 DOI: 10.1016/j.ijid.2019.11.026
    OBJECTIVES: The aim of this study was to determine the prevalence of malaria in Sabah and its potential risk factors.

    METHODS: This cross-sectional study analysed secondary data obtained from the health clinics in Sabah, Malaysia from January to August 2016. The Pearson Chi-square test was used to analyse the relationships between malaria infection and socio-demographic characteristics. Multivariable logistic regression was performed in order to determine the risk factors for malaria in Sabah.

    RESULTS: Out of 1222 patients, 410 (33.6%) had a laboratory-confirmed malaria infection. Infection by Plasmodium knowlesi accounted for the majority of malaria reports in Sabah (n=340, 82.9%). Multivariable analysis indicated that males (prevalence odds ratio 0.023, 95% confidence interval 0.012-0.047) and those living in a rural area (prevalence odds ratio 0.004, 95% confidence interval 0.002-0.009) were at higher risk 24.0-95.9) and those living in a rural area (adjusted odds ratio 212.6, 95% confidence interval 105.8-427.2) were at higher risk of acquiring a malaria infection.

    CONCLUSIONS: Malaria infections in Sabah, Malaysia are common, with P. knowlesi being the most common malaria parasite. The infection was associated with several socio-demographic and geographical factors. Thus, mitigation measures should be considered to address modifiable risk factors for malaria infection.

    Matched MeSH terms: Geography
  4. Dusfour I, Linton YM, Cohuet A, Harbach RE, Baimai V, Trung HD, et al.
    J Med Entomol, 2004 May;41(3):287-95.
    PMID: 15185927
    Anopheles sundaicus s.l. is a principal malaria vector taxon on islands and along the coastal areas of Southeast Asia. It has a wide geographical distribution and exhibits a high level of ecological and behavioral variability. Study of this taxon is crucial for understanding its biology and implementing effectise vector control measures. We compared populations of An. sundaicus from Vietnam, Thailand, and Malaysian Borneo by using two mitochondrial DNA markers: cytochrome oxidase I and cytochrome b. Genetic divergence, geographic separation, and cladistic analysis of relationships revealed the presence of two cryptic species: Anopheles sundaicus s.s. on Malaysian Borneo and An. sundaicus species A in coastal areas of Thailand and Vietnam. A polymerase chain reaction (PCR) assay was developed to easily identify these two species throughout their geographic distributions. The assay was based on sequence characterized amplified region derived from random amplified polymorphic DNA. This PCR identification method needs to be validated and adapted for the recognition of other possible species in the Sundaicus Complex.
    Matched MeSH terms: Geography
  5. Rakib MRJ, Jolly YN, Dioses-Salinas DC, Pizarro-Ortega CI, De-la-Torre GE, Khandaker MU, et al.
    Sci Rep, 2021 10 25;11(1):20999.
    PMID: 34697391 DOI: 10.1038/s41598-021-99750-7
    Although coastal water marine algae have been popularly used by others as indicators of heavy metal pollution, data within the Bay of Bengal for the estuarine Cox's Bazar region and Saint Martin's Island has remained scarce. Using marine algae, the study herein forms an effort in biomonitoring of metal contamination in the aforementioned Bangladesh areas. A total of 10 seaweed species were collected, including edible varieties, analyzed for metal levels through the use of the technique of EDXRF. From greatest to least, measured mean metal concentrations in descending order have been found to be K > Fe > Zr > Br > Sr > Zn > Mn > Rb > Cu > As > Pb > Cr > Co. Potential toxic heavy metals such as Pb, As, and Cr appear at lower concentration values compared to that found for essential mineral elements. However, the presence of Pb in Sargassum oligocystum species has been observed to exceed the maximum international guidance level. Given that some of the algae species are cultivated for human consumption, the non-carcinogenic and carcinogenic indices were calculated, shown to be slightly lower than the maxima recommended by the international organizations. Overall, the present results are consistent with literature data suggesting that heavy metal macroalgae biomonitoring may be species-specific. To the best of our knowledge, this study represents the first comprehensive macroalgae biomonitoring study of metal contamination from the coastal waters of Cox's Bazar and beyond.
    Matched MeSH terms: Geography
  6. Harrisson KA, Amish SJ, Pavlova A, Narum SR, Telonis-Scott M, Rourke ML, et al.
    Mol Ecol, 2017 Nov;26(22):6253-6269.
    PMID: 28977721 DOI: 10.1111/mec.14368
    Adaptive differences across species' ranges can have important implications for population persistence and conservation management decisions. Despite advances in genomic technologies, detecting adaptive variation in natural populations remains challenging. Key challenges in gene-environment association studies involve distinguishing the effects of drift from those of selection and identifying subtle signatures of polygenic adaptation. We used paired-end restriction site-associated DNA sequencing data (6,605 biallelic single nucleotide polymorphisms; SNPs) to examine population structure and test for signatures of adaptation across the geographic range of an iconic Australian endemic freshwater fish species, the Murray cod Maccullochella peelii. Two univariate gene-association methods identified 61 genomic regions associated with climate variation. We also tested for subtle signatures of polygenic adaptation using a multivariate method (redundancy analysis; RDA). The RDA analysis suggested that climate (temperature- and precipitation-related variables) and geography had similar magnitudes of effect in shaping the distribution of SNP genotypes across the sampled range of Murray cod. Although there was poor agreement among the candidate SNPs identified by the univariate methods, the top 5% of SNPs contributing to significant RDA axes included 67% of the SNPs identified by univariate methods. We discuss the potential implications of our findings for the management of Murray cod and other species generally, particularly in relation to informing conservation actions such as translocations to improve evolutionary resilience of natural populations. Our results highlight the value of using a combination of different approaches, including polygenic methods, when testing for signatures of adaptation in landscape genomic studies.
    Matched MeSH terms: Geography
  7. Zalina, N., Ruqaiyah, B. R., Hamizah, I., Roszaman, R., Mokhtar, A., Rozihan, I., et al.
    MyJurnal
    Objective: Lower Urinary Tract Symptoms (LUTS) is a highly prevalent disease which varies by geography
    and culture. It influences the quality of life and has social implication. The objectives of this study are to
    estimate the prevalence of LUTS among women attending our gynaecology clinic, the associated risk factors
    and their quality of life. Method: This is a cross sectional study on women attending gynaecology clinic in a
    tertiary centre. Participants were given 3 sets of validated self-answered questionnaire, UDI-6, IIQ-7 and
    OAB V8. Results: the prevalence of luts is 50.6% which is common among Malay women. Forty nine percent
    is due to stress urinary incontinence (SUI). The risk of LUTS is significantly associated with obesity (AOR =
    12.14 95% CI = 1.21 to 121.99, p – value = 0.034), higher parity (AOR = 1.68 95% CI = 1.26 to 2.24, p – value =
    Matched MeSH terms: Geography
  8. Lim KC, Then AY, Wee AKS, Sade A, Rumpet R, Loh KH
    Sci Rep, 2021 Jul 21;11(1):14874.
    PMID: 34290296 DOI: 10.1038/s41598-021-94257-7
    The demersal brown banded bamboo shark Chiloscyllium punctatum is a major component of sharks landed in Malaysia. However, little is known about their population structure and the effect of high fishing pressure on these weak swimming sharks. Both mitochondrial DNA control region (1072 bp) and NADH dehydrogenase subunit 2 (1044 bp) were used to elucidate the genetic structure and connectivity of C. punctatum among five major areas within the Sundaland region. Our findings revealed (i) strong genetic structure with little present day mixing between the major areas, (ii) high intra-population genetic diversity with unique haplotypes, (iii) significant correlation between genetic differentiation and geographical distance coupled with detectable presence of fine scale geographical barriers (i.e. the South China Sea), (iv) historical directional gene flow from the east coast of Peninsular Malaysia towards the west coast and Borneo, and (v) no detectable genetic differentiation along the coastline of east Peninsular Malaysia. Genetic patterns inferred from the mitochondrial DNA loci were consistent with the strong coastal shelf association in this species, the presence of contemporary barriers shaped by benthic features, and limited current-driven egg dispersal. Fine scale population structure of C. punctatum highlights the need to improve genetic understanding for fishery management and conservation of other small-sized sharks.
    Matched MeSH terms: Geography
  9. Ehbrecht M, Seidel D, Annighöfer P, Kreft H, Köhler M, Zemp DC, et al.
    Nat Commun, 2021 01 22;12(1):519.
    PMID: 33483481 DOI: 10.1038/s41467-020-20767-z
    The complexity of forest structures plays a crucial role in regulating forest ecosystem functions and strongly influences biodiversity. Yet, knowledge of the global patterns and determinants of forest structural complexity remains scarce. Using a stand structural complexity index based on terrestrial laser scanning, we quantify the structural complexity of boreal, temperate, subtropical and tropical primary forests. We find that the global variation of forest structural complexity is largely explained by annual precipitation and precipitation seasonality (R² = 0.89). Using the structural complexity of primary forests as benchmark, we model the potential structural complexity across biomes and present a global map of the potential structural complexity of the earth´s forest ecoregions. Our analyses reveal distinct latitudinal patterns of forest structure and show that hotspots of high structural complexity coincide with hotspots of plant diversity. Considering the mechanistic underpinnings of forest structural complexity, our results suggest spatially contrasting changes of forest structure with climate change within and across biomes.
    Matched MeSH terms: Geography
  10. de Manuel M, Barnett R, Sandoval-Velasco M, Yamaguchi N, Garrett Vieira F, Zepeda Mendoza ML, et al.
    Proc Natl Acad Sci U S A, 2020 May 19;117(20):10927-10934.
    PMID: 32366643 DOI: 10.1073/pnas.1919423117
    Lions are one of the world's most iconic megafauna, yet little is known about their temporal and spatial demographic history and population differentiation. We analyzed a genomic dataset of 20 specimens: two ca. 30,000-y-old cave lions (Panthera leo spelaea), 12 historic lions (Panthera leo leo/Panthera leo melanochaita) that lived between the 15th and 20th centuries outside the current geographic distribution of lions, and 6 present-day lions from Africa and India. We found that cave and modern lions shared an ancestor ca. 500,000 y ago and that the 2 lineages likely did not hybridize following their divergence. Within modern lions, we found 2 main lineages that diverged ca. 70,000 y ago, with clear evidence of subsequent gene flow. Our data also reveal a nearly complete absence of genetic diversity within Indian lions, probably due to well-documented extremely low effective population sizes in the recent past. Our results contribute toward the understanding of the evolutionary history of lions and complement conservation efforts to protect the diversity of this vulnerable species.
    Matched MeSH terms: Geography
  11. Podin Y, Kaestli M, McMahon N, Hennessy J, Ngian HU, Wong JS, et al.
    J Clin Microbiol, 2013 Sep;51(9):3076-8.
    PMID: 23784129 DOI: 10.1128/JCM.01290-13
    Misidentifications of Burkholderia pseudomallei as Burkholderia cepacia by Vitek 2 have occurred. Multidimensional scaling ordination of biochemical profiles of 217 Malaysian and Australian B. pseudomallei isolates found clustering of misidentified B. pseudomallei isolates from Malaysian Borneo. Specificity of B. pseudomallei identification in Vitek 2 and potentially other automated identification systems is regionally dependent.
    Matched MeSH terms: Geography
  12. Morais RA, Siqueira AC, Smallhorn-West PF, Bellwood DR
    PLoS Biol, 2021 Nov;19(11):e3001435.
    PMID: 34727097 DOI: 10.1371/journal.pbio.3001435
    Spatial subsidies increase local productivity and boost consumer abundance beyond the limits imposed by local resources. In marine ecosystems, deeper water and open ocean subsidies promote animal aggregations and enhance biomass that is critical for human harvesting. However, the scale of this phenomenon in tropical marine systems remains unknown. Here, we integrate a detailed assessment of biomass production in 3 key locations, spanning a major biodiversity and abundance gradient, with an ocean-scale dataset of fish counts to predict the extent and magnitude of plankton subsidies to fishes on coral reefs. We show that planktivorous fish-mediated spatial subsidies are widespread across the Indian and Pacific oceans and drive local spikes in biomass production that can lead to extreme productivity, up to 30 kg ha-1 day-1. Plankton subsidies form the basis of productivity "sweet spots" where planktivores provide more than 50% of the total fish production, more than all other trophic groups combined. These sweet spots operate at regional, site, and smaller local scales. By harvesting oceanic productivity, planktivores bypass spatial constraints imposed by local primary productivity, creating "oases" of tropical fish biomass that are accessible to humans.
    Matched MeSH terms: Geography
  13. Muriuki JM, Mentzer AJ, Mitchell R, Webb EL, Etyang AO, Kyobutungi C, et al.
    Nat Med, 2021 Apr;27(4):653-658.
    PMID: 33619371 DOI: 10.1038/s41591-021-01238-4
    Malaria and iron deficiency (ID) are common and interrelated public health problems in African children. Observational data suggest that interrupting malaria transmission reduces the prevalence of ID1. To test the hypothesis that malaria might cause ID, we used sickle cell trait (HbAS, rs334 ), a genetic variant that confers specific protection against malaria2, as an instrumental variable in Mendelian randomization analyses. HbAS was associated with a 30% reduction in ID among children living in malaria-endemic countries in Africa (n = 7,453), but not among individuals living in malaria-free areas (n = 3,818). Genetically predicted malaria risk was associated with an odds ratio of 2.65 for ID per unit increase in the log incidence rate of malaria. This suggests that an intervention that halves the risk of malaria episodes would reduce the prevalence of ID in African children by 49%.
    Matched MeSH terms: Geography
  14. Moretti B, Al-Sheikhly OF, Guerrini M, Theng M, Gupta BK, Haba MK, et al.
    Sci Rep, 2017 Jan 27;7:41611.
    PMID: 28128366 DOI: 10.1038/srep41611
    We investigated the phylogeography of the smooth-coated otter (Lutrogale perspicillata) to determine its spatial genetic structure for aiding an adaptive conservation management of the species. Fifty-eight modern and 11 archival (dated 1882-1970) otters sampled from Iraq to Malaysian Borneo were genotyped (mtDNA Cytochrome-b, 10 microsatellite DNA loci). Moreover, 16 Aonyx cinereus (Asian small-clawed otter) and seven Lutra lutra (Eurasian otter) were sequenced to increase information available for phylogenetic reconstructions. As reported in previous studies, we found that L. perspicillata, A. cinereus and A. capensis (African clawless otter) grouped in a clade sister to the genus Lutra, with L. perspicillata and A. cinereus being reciprocally monophyletic. Within L. perspicillata, we uncovered three Evolutionarily Significant Units and proved that L. p. maxwelli is not only endemic to Iraq but also the most recent subspecies. We suggest a revision of the distribution range limits of easternmost L. perspicillata subspecies. We show that smooth-coated otters in Singapore are L. perspicillata x A. cinereus hybrids with A. cinereus mtDNA, the first reported case of hybridization in the wild among otters. This result also provides evidence supporting the inclusion of L. perspicillata and A. cinereus in the genus Amblonyx, thus avoiding the paraphyly of the genus Aonyx.
    Matched MeSH terms: Geography; Phylogeography*
  15. Palya V, Kovács EW, Marton S, Tatár-Kis T, Felföldi B, Forró B, et al.
    Emerg Infect Dis, 2019 06;25(6):1110-1117.
    PMID: 31107212 DOI: 10.3201/eid2506.181661
    During 2014-2017, we isolated a novel orthobunyavirus from broiler chickens with severe kidney lesions in the state of Kedah, Malaysia; we named the virus Kedah fatal kidney syndrome virus (KFKSV). Affected chickens became listless and diarrheic before dying suddenly. Necropsies detected pale and swollen kidneys with signs of gout, enlarged and fragile livers, and pale hearts. Experimental infection of broiler chickens with KFKSV reproduced the disease and pathologic conditions observed in the field, fulfilling the Koch's postulates. Gene sequencing indicated high nucleotide identities between KFKSV isolates (99%) and moderate nucleotide identities with the orthobunyavirus Umbre virus in the large (78%), medium (77%), and small (86%) genomic segments. KFKSV may be pathogenic for other host species, including humans.
    Matched MeSH terms: Geography, Medical
  16. Cameron NA, Freaney PM, Wang MC, Perak AM, Dolan BM, O'Brien MJ, et al.
    Circulation, 2022 Feb 15;145(7):549-551.
    PMID: 35157521 DOI: 10.1161/CIRCULATIONAHA.121.057107
    Matched MeSH terms: Geography, Medical
  17. Padilla-Iglesias C, Gjesfjeld E, Vinicius L
    PLoS One, 2020;15(12):e0243171.
    PMID: 33259529 DOI: 10.1371/journal.pone.0243171
    The origins of linguistic diversity remain controversial. Studies disagree on whether group features such as population size or social structure accelerate or decelerate linguistic differentiation. While some analyses of between-group factors highlight the role of geographical isolation and reduced linguistic exchange in differentiation, others suggest that linguistic divergence is driven primarily by warfare among neighbouring groups and the use of language as marker of group identity. Here we provide the first integrated test of the effects of five historical sociodemographic and geographic variables on three measures of linguistic diversification among 50 Austronesian languages: rates of word gain, loss and overall lexical turnover. We control for their shared evolutionary histories through a time-calibrated phylogenetic sister-pairs approach. Results show that languages spoken in larger communities create new words at a faster pace. Within-group conflict promotes linguistic differentiation by increasing word loss, while warfare hinders linguistic differentiation by decreasing both rates of word gain and loss. Finally, we show that geographical isolation is a strong driver of lexical evolution mainly due to a considerable drift-driven acceleration in rates of word loss. We conclude that the motor of extreme linguistic diversity in Austronesia may have been the dispersal of populations across relatively isolated islands, favouring strong cultural ties amongst societies instead of warfare and cultural group marking.
    Matched MeSH terms: Geography
  18. Matsumura H, Hudson MJ
    Am J Phys Anthropol, 2005 Jun;127(2):182-209.
    PMID: 15558609
    This article uses metric and nonmetric dental data to test the "two-layer" or immigration hypothesis whereby Southeast Asia was initially occupied by an "Australo-Melanesian" population that later underwent substantial genetic admixture with East Asian immigrants associated with the spread of agriculture from the Neolithic period onwards. We examined teeth from 4,002 individuals comprising 42 prehistoric and historic samples from East Asia, Southeast Asia, Australia, and Melanesia. For the odontometric analysis, dental size proportions were compared using factor analysis and Q-mode correlation coefficients, and overall tooth size was also compared between population samples. Nonmetric population affinities were estimated by Smith's distances, using the frequencies of 16 tooth traits. The results of both the metric and nonmetric analyses demonstrate close affinities between recent Australo-Melanesian samples and samples representing early Southeast Asia, such as the Early to Middle Holocene series from Vietnam, Malaysia, and Flores. In contrast, the dental characteristics of most modern Southeast Asians exhibit a mixture of traits associated with East Asians and Australo-Melanesians, suggesting that these populations were genetically influenced by immigrants from East Asia. East Asian metric and/or nonmetric traits are also found in some prehistoric samples from Southeast Asia such as Ban Kao (Thailand), implying that immigration probably began in the early Neolithic. Much clearer influence of East Asian immigration was found in Early Metal Age Vietnamese and Sulawesi samples. Although the results of this study are consistent with the immigration hypothesis, analysis of additional Neolithic samples is needed to determine the exact timing of population dispersals into Southeast Asia.
    Matched MeSH terms: Geography
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links