Displaying publications 21 - 25 of 25 in total

Abstract:
Sort:
  1. Abu N, Mohamed NE, Yeap SK, Lim KL, Akhtar MN, Zulfadli AJ, et al.
    Drug Des Devel Ther, 2015;9:1401-17.
    PMID: 25834398 DOI: 10.2147/DDDT.S67976
    Flavokawain B (FKB) is a naturally occurring chalcone that can be isolated through the root extracts of the kava-kava plant (Piper methysticum). It can also be synthesized chemically to increase the yield. This compound is a promising candidate as a biological agent, as it is reported to be involved in a wide range of biological activities. Furthermore, FKB was reported to have antitumorigenic effects in several cancer cell lines in vitro. However, the in vivo antitumor effects of FKB have not been reported on yet. Breast cancer is one of the major causes of cancer-related deaths in the world today. Any potential treatment should not only impede the growth of the tumor, but also modulate the immune system efficiently and inhibit the formation of secondary tumors. As presented in our study, FKB induced apoptosis in 4T1 tumors in vivo, as evidenced by the terminal deoxynucleotidyl transferase dUTP nick end labeling and hematoxylin and eosin staining of the tumor. FKB also regulated the immune system by increasing both helper and cytolytic T-cell and natural killer cell populations. In addition, FKB also enhanced the levels of interleukin 2 and interferon gamma but suppressed interleukin 1B. Apart from that, FKB was also found to inhibit metastasis, as evaluated by clonogenic assay, bone marrow smearing assay, real-time polymerase chain reaction, Western blot, and proteome profiler analysis. All in all, FKB may serve as a promising anticancer agent, especially in treating breast cancer.
  2. Ali NM, Akhtar MN, Ky H, Lim KL, Abu N, Zareen S, et al.
    Drug Des Devel Ther, 2016;10:1897-907.
    PMID: 27358555 DOI: 10.2147/DDDT.S102164
    Known as naturally occurring biologically active compounds, flavokawain A and B are the leading chalcones that possess anticancer properties. Another flavokawain derivative, (E)-1-(2'-Hydroxy-4',6'-dimethoxyphenyl)-3-(4-methylthio)phenyl)prop-2-ene-1-one (FLS) was characterized with (1)H-nuclear magnetic resonance, electron-impact mas spectrometry, infrared spectroscopy, and ultraviolet ((1)H NMR, EI-MS, IR, and UV) spectroscopic techniques. FLS cytotoxic efficacy against human cancer cells (MCF-7, MDA-MB-231, and MCF-10A) resulted in the reduction of IC50 values in a time- and dose-dependent mode with high specificity on MCF-7 (IC50 of 36 μM at 48 hours) against normal breast cell MCF-10A (no IC50 detected up to 180 μM at 72 hours). Light, scanning electron, and fluorescent microscopic analysis of MCF-7 cells treated with 36 μM of FLS displayed cell shrinkage, apoptotic body, and DNA fragmentation. Additionally, induction of G2/M cell arrest within 24 hours and apoptosis at subsequent time points was discovered via flow cytometry analysis. The roles of PLK-1, Wee-1, and phosphorylation of CDC-2 in G2/M arrest and proapoptotic factors (Bax, caspase 9, and p53) in promotion of apoptosis of FLS against MCF-7 cells were discovered using fluorometric, quantitative real-time polymerase chain reaction, and Western blot analysis. Interestingly, the presence of SCH3 (thiomethyl group) on ring B structure contributed to the selective cytotoxicity against MCF-7 cells compared to other chalcones, flavokawain A and B. Overall, our data suggest potential therapeutic value for flavokawain derivative FLS to be further developed as a new anticancer drug.
  3. Ali NM, Yeap SK, Abu N, Lim KL, Ky H, Pauzi AZM, et al.
    Cancer Cell Int, 2017;17:30.
    PMID: 28239299 DOI: 10.1186/s12935-017-0400-3
    AIMS: Curcumin is a lead compound of the rhizomes of Curcuma longa and possess a broad range of pharmacological activities. Chemically, curcumin is 1,3-dicarbonyl class of compound, which exhibits keto-enol tautomerism. Despite of its strong biological properties, curcumin has yet been recommended as a therapeutic agent because of its poor bioavailability.

    MAIN METHODS: A curcumin derivative (Z)-3-hydroxy-1-(2-hydroxyphenyl)-3-phenylprop-2-en-1-one (DK1) was synthesized and its cytotoxicity was tested on breast cancer cell MCF-7 and normal cell MCF-10A using MTT assay. Meanwhile, cell cycle regulation and apoptosis on MCF-7 cell were evaluated using flow cytometry. Regulation of cell cycle and apoptosis related genes expression was investigated by quantitative real time polymerase chain reaction (qRT-PCR), western blot and caspases activity analyses. Activation of oxidative stress on MCF-7 were evaluated by measuring ROS and GSH levels.

    KEY FINDINGS: DK1 was found to possess selective cytotoxicity on breast cancer MCF-7 cell than normal MCF-10A cell. Flow cytometry cell cycle and AnnexinV/PI analyses reported that DK1 effectively arrested MCF-7 at G2/M phase and induced apoptosis after 72 h of incubation than curcumin. Upregulation of p53, p21 and downregulation of PLK-1 subsequently promote phosphorylation of CDC2 which were found contributed to the arrest of G2/M phase. Moreover, increased of reactive oxygen species and reduced of antioxidant glutathione level correlate with apoptosis observed with raised of cytochrome c and active caspase 9.

    SIGNIFICANCE: DK1 was found to be more effective in inducing cell cycle arrest and apoptosis against MCF-7 cell with much higher selectivity index of MCF-10A/MCF-7 than curcumin, which might be contributed by the overexpression of p53 protein.

  4. Abu N, Akhtar MN, Yeap SK, Lim KL, Ho WY, Zulfadli AJ, et al.
    PLoS One, 2014;9(10):e105244.
    PMID: 25286005 DOI: 10.1371/journal.pone.0105244
    INTRODUCTION: The kava-kava plant (Piper methsyticum) is traditionally known as the pacific elixir by the pacific islanders for its role in a wide range of biological activities. The extract of the roots of this plant contains a variety of interesting molecules including Flavokawain A and this molecule is known to have anti-cancer properties. Breast cancer is still one of the leading diagnosed cancers in women today. The metastatic process is also very pertinent in the progression of tumorigenesis.

    METHODS: MCF-7 and MDA-MB231 cells were treated with several concentrations of FKA. The apoptotic analysis was done through the MTT assay, BrdU assay, Annexin V analysis, cell cycle analysis, JC-1 mitochondrial dye, AO/PI dual staining, caspase 8/9 fluorometric assay, quantitative real time PCR and western blot. For the metastatic assays, the in vitro scratch assay, trans-well migration/invasion assay, HUVEC tube formation assay, ex vivo rat aortic ring assay, quantitative real time PCR and western blot were employed.

    RESULTS: We have investigated the effects of FKA on the apoptotic and metastatic process in two breast cancer cell lines. FKA induces apoptosis in both MCF-7 and MDA-MB231 in a dose dependent manner through the intrinsic mitochondrial pathway. Additionally, FKA selectively induces a G2/M arrest in the cell cycle machinery of MDA-MB231 and G1 arrest in MCF-7. This suggests that FKA's anti-cancer activity is dependent on the p53 status. Moreover, FKA also halted the migration and invasion process in MDA-MB231. The similar effects can be seen in the inhibition of the angiogenesis process as well.

    CONCLUSIONS: FKA managed to induce apoptosis and inhibit the metastatic process in two breast cancer cell lines, in vitro. Overall, FKA may serve as a promising candidate in the search of a new anti-cancer drug especially in halting the metastatic process but further in vivo evidence is needed.

  5. Ashkir Z, Samat AHA, Ariga R, Finnigan L, Jermy S, Akhtar MA, et al.
    PMID: 39417278 DOI: 10.1093/ehjci/jeae260
    BACKGROUND: Myocardial disarray, an early feature of hypertrophic cardiomyopathy (HCM) and a substrate for ventricular arrhythmia, is poorly characterised in prehypertrophic sarcomeric variant carriers (SARC+LVH-).

    OBJECTIVES: Using diffusion tensor cardiac magnetic resonance (DT-CMR) we assessed myocardial disarray and fibrosis in both SARC+LVH- and HCM patients and evaluated the relationship between microstructural alterations and electrocardiographic (ECG) parameters associated with arrhythmic risk.

    METHODS: Sixty-two individuals (24 SARC+LVH-, 24 HCM and 14 matched controls) were evaluated with multiparametric CMR including stimulated echo acquisition mode (STEAM) DT-CMR, and blinded quantitative 12-lead ECG analysis.

    RESULTS: Mean diastolic fractional anisotropy (FA) was reduced in HCM compared to SARC+LVH- and controls (0.49±0.05 vs 0.52±0.04 vs 0.53±0.04, p=0.009), even after adjustment for differences in extracellular volume (ECV) (p=0.038). Both HCM and SARC+LVH- had segments with significantly reduced FA relative to controls (54% vs 25% vs 0%, p=0.002). Multiple repolarization parameters were prolonged in HCM and SARC+LVH-, with corrected JT interval (JTc) being most significant (354±42ms vs 356±26ms vs 314±26ms, p=0.002). Among SARC+LVH-, JTc duration correlated negatively with mean FA (r=-0.6, p=0.002). In HCM, the JTc interval showed a stronger association with ECV (r=0.6 p=0.019) than FA (r=-0.1 p=0.72). JTc discriminated SARC+LVH- from controls (Area-under-the-receiver-operator-curve 0.88, CI 0.76-1.00, p<0.001), and in HCM correlated with the ESC HCM sudden cardiac death risk score (r=0.5, p=0.014).

    CONCLUSION: Low diastolic FA, suggestive of myocardial disarray, is present in both SARC+LVH- and HCM. Low FA and raised ECV were associated with repolarization prolongation. Myocardial disarray assessment using DT-CMR and repolarization parameters such as the JTc interval demonstrate significant potential as markers of disease activity in HCM.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links