Displaying publications 21 - 28 of 28 in total

Abstract:
Sort:
  1. Ja'afar JN, Bhore SJ, Phua KK
    BMC Res Notes, 2018 Oct 29;11(1):766.
    PMID: 30373642 DOI: 10.1186/s13104-018-3870-z
    OBJECTIVE: Identification of Salmonella Typhi by conventional culture techniques is labour-intensive, time consuming, and lack sensitivity and specificity unlike high-throughput epidemiological markers that are highly specific but are not affordable for low-resource settings. SCAR, obtained from RAPD technique, is an affordable, reliable and reproducible method for developing genetic markers. Hence, this study investigated the use of SCAR as an alternative molecular epidemiological marker for easy identification of S. Typhi in low-resource settings.

    RESULTS: One hundred and twenty RAPD primers were screened through RAPD-PCR against a panel of common enterobacteriaceae for the best RAPD band pattern discrimination to develop SCAR primers that were used to develop a RAPD-SCAR PCR. Of this number, 10 were selected based on their calculated indices of discrimination. Four RAPD primers, SBSA02, SBSA03, SBSD08 and SBSD11 produced suitable bands ranging from 900 to 2500 bp. However, only SBSD11 was found to be specific for S. Typhi, and was cloned, sequenced and used to design new SCAR primers. The primers were used to amplify a panel of organisms to evaluate its specificity. However, the amplified regions were similar to other non-Typhi genomes denoting a lack of specificity of the primers as a marker for S. Typhi.

  2. Monowar T, Rahman MS, Bhore SJ, Raju G, Sathasivam KV
    Molecules, 2018 Dec 06;23(12).
    PMID: 30563220 DOI: 10.3390/molecules23123220
    Antibiotic resistance is one of the most important global problems currently confronting the world. Different biomedical applications of silver nanoparticles (AgNPs) have indicated them to be promising antimicrobial agents. In the present study, extracellular extract of an endophytic bacterium, Pantoea ananatis, was used for synthesis of AgNPs. The synthesized AgNPs were characterized by UV⁻Vis spectroscopy, FTIR, transmission electron microscopy (TEM), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), and Zeta potential. The antimicrobial potential of the AgNPs against pathogenic Staphylococcus aureus subsp. aureus (ATCC 11632), Bacillus cereus (ATCC 10876), Escherichia coli (ATCC 10536), Pseudomonas aeruginosa (ATCC 10145) and Candida albicans (ATCC 10231), and multidrug resistant (MDR) Streptococcus pneumoniae (ATCC 700677), Enterococcus faecium (ATCC 700221) Staphylococcus aureus (ATCC 33592) Escherichia coli (NCTC 13351) was investigated. The synthesized spherical-shaped AgNPs with a size range of 8.06 nm to 91.32 nm exhibited significant antimicrobial activity at 6 μg/disc concentration against Bacillus cereus (ATCC 10876) and Candida albicans (ATCC 10231) which were found to be resistant to conventional antibiotics. The synthesized AgNPs showed promising antibacterial efficiency at 10 µg/disc concentration against the MDR strains. The present study suggests that AgNPs synthesized by using the endophytic bacterium P. ananatis are promising antimicrobial agent.
  3. Husin NA, Rahman S, Karunakaran R, Bhore SJ
    Bioinformation, 2018;14(6):265-270.
    PMID: 30237671 DOI: 10.6026/97320630014265
    Durian (Durio zibethinus L.; Family Bombacaceae) is an iconic tropical fruit plant cultivated in Malaysia and the Southeast Asian countries. In Malaysia, durian is recognised as the King of fruits and well known as a rich source of volatile sulphur compounds that make it unique. Fruit pulp of this fruit is an excellent source of nutrients as it contains proteins, dietary fat, fibers, and carbohydrates. Durian leaf and root decoctions are known to have a febrifuge and anti-malarial properties. The understanding of this plant's molecular biology will help breeders to develop a strategy for its further improvements. Hence, there is a need to identify and understand the genes necessary for the quality improvement of the durian fruits. Its genome contains about 46,000 genes which is almost double that of humans (Homo sapiens). The understanding of durian genes will be useful not only in the molecular breeding but also in the microbial production of novel proteins and or enzymes. This review highlights nutritional and medicinal attributes of durian. The molecular studies including the importance of undertaking transcriptomics work and the insights from the most recently reported genome draft are also highlighted.
  4. Bhore SJ
    Bioinformation, 2019;15(8):568-571.
    PMID: 31719766 DOI: 10.6026/97320630015568
    The innovations and developments in microbiology, biomedical sciences, and biotechnology come along with the challenges of biological risk (biorisk). Biorisk is defined as the "combination of the probability of occurrence of harm and the severity of that harm where the source of harm is a biological agent or toxin." Biorisk is a borderless challenge to the global community. Hence, all universities, colleges, centers of bio-excellence, and institutions of higher learning can and should do their bit to educate technical members, academicians, students and stakeholders (LASS) for the efficient and comprehensive biorisk management (BRM) for our and future generations safety and sustainability.
  5. Monowar T, Rahman MS, Bhore SJ, Raju G, Sathasivam KV
    Biomed Res Int, 2019;2019:6951927.
    PMID: 30868071 DOI: 10.1155/2019/6951927
    Secondary bioactive compounds of endophytes are inevitable biomolecules of therapeutical importance. In the present study, secondary metabolites profiling of an endophytic bacterial strain, Acinetobacter baumannii, were explored using GC-MS study. Presence of antioxidant substances and antioxidant properties in chloroform (CHL), diethyl ether (DEE), and ethyl acetate (EA) crude extracts of the endophytic bacteria were studied. Total phenolic content (TPC), total flavonoid content (TFC), total antioxidant capacity (TAC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, and ferrous ion chelating assay were evaluated. A total of 74 compounds were identified from the GC-MS analysis of the EA extract representing mostly alkane compounds followed by phenols, carboxylic acids, aromatic heterocyclic compounds, ketones, aromatic esters, aromatic benzenes, and alkenes. Among the two phenolic compounds, namely, phenol, 2,4-bis(1,1-dimethylethyl)- and phenol, 3,5-bis(1,1-dimethylethyl)-, the former was found in abundance (11.56%) while the latter was found in smaller quantity (0.14%). Moreover, the endophytic bacteria was found to possess a number of metal ions including Fe(II) and Cu(II) as 1307.13 ± 2.35 ppb and 42.38 ± 0.352 ppb, respectively. The extracts exhibited concentration dependent antioxidant and prooxidant properties at high and low concentrations, respectively. The presence of phenolic compounds and metal ions was believed to play an important role in the antioxidant and prooxidant potentials of the extracts. Further studies are suggested for exploring the untapped resource of endophytic bacteria for the development of novel therapeutic agents.
  6. Bhore SJ
    Cien Saude Colet, 2020 Nov;25(11):4347-4350.
    PMID: 33175043 DOI: 10.1590/1413-812320202511.33622018
    On 31st May of every year, in honour of the 'World No Tobacco Day (WNTD),' the international community does organise various events and encourages avoiding all forms of Tobacco consumption. To commemorate WNTD-2018, the World Health Organization (WHO) has promoted awareness to highlight the link between Tobacco and cardiovascular disease (CVD). Because, Tobacco use is the second leading cause of CVD, after high blood pressure. In addition to CVD, Tobacco use is also known to cause many non-communicable diseases, including chronic obstructive pulmonary disease (COPD), lung cancer and other complicated disorders caused by smoking. In fact, non-communicable diseases are now emerging as the primary disease burden. Globally, Tobacco use kills about 7 million people each year, and if the trend remains the same, then it will kill more than 8 million people per year by 2030. On the contrary, despite promoting awareness, the Tobacco industry is growing with little or no regulation. However, in the long run, the global community will not be able to afford business as usual as Tobacco has a direct impact on human health, environmental health and sustainable development.
  7. Monowar T, Rahman MS, Bhore SJ, Sathasivam KV
    Pharmaceutics, 2021 Apr 08;13(4).
    PMID: 33917798 DOI: 10.3390/pharmaceutics13040511
    Antimicrobial resistance (AMR), one of the greatest issues for humankind, draws special attention to the scientists formulating new drugs to prevent it. Great emphasis on the biological synthesis of silver nanoparticles (AgNPs) for utilization in single or combinatorial therapy will open up new avenues to the discovery of new antimicrobial drugs. The purpose of this study was to synthesize AgNPs following a green approach by using an endophytic bacterial strain, Enterobacter hormaechei, and to assess their antimicrobial potential against five pathogenic and four multidrug-resistant (MDR) microbes. UV-Vis spectroscopy, fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), and zeta potential (ζ) were used to characterize the synthesized AgNPs. Endophytic E. hormaechei-mediated AgNPs (Eh-AgNPs) were represented by a strong UV-Vis absorbance peak at 418 nm within 5 min, forming spherical and polydispersed nanoparticles in the size range of 9.91 nm to 92.54 nm. The Eh-AgNPs were moderately stable with a mean ζ value of -19.73 ± 3.94 mV. The presence of amine, amide, and hydroxyl functional groups was observed from FTIR analysis. In comparison to conventional antibiotics, the Eh-AgNPs were more effective against Bacillus cereus (ATCC 10876) and Candida albicans (ATCC 10231), exhibiting 9.14 ± 0.05 mm and 8.24 ± 0.05 mm zones of inhibition (ZOIs), respectively, while displaying effective inhibitory activity with ZOIs ranging from 10.98 ± 0.08 to 13.20 ± 0.07 mm against the MDR bacteria. Eh-AgNP synthesis was rapid and eco-friendly. The results showed that Eh-AgNPs are promising antimicrobial agents that can be used in the development and formulation of new drugs to curb the menace of antimicrobial resistance in pathogenic and MDR microbes.
  8. Husin NA, Rahman S, Karunakaran R, Bhore SJ
    Genet Mol Biol, 2023;45(4):e20210379.
    PMID: 36622241 DOI: 10.1590/1678-4685-GMB-2021-0379
    Durian (Durio zibethinus Murr.) fruits are famous for their unique aroma. This study analysed the Durian fruit transcriptome to discover the expression patterns of genes and to understand their regulation. Three developmental stages of Durian fruit, namely, early [90 days post-anthesis (DPA)], mature (120 DPA), and ripen (127 DPA), were studied. The Illumina HiSeq platform was used for sequencing. The sequence data were analysed using four different mapping aligners and statistical methods: CLC Genomic Workbench, HISAT2+DESeq2, Tophat+Cufflinks, and HISAT2+edgeR. The analyses showed that over 110 million clean reads were mapped to the Durian genome, yielding 19,976, 11,394, 17,833, and 24,351 differentially expressed genes during 90-127 days post-anthesis. Many identified differentially expressed genes were linked to the fruit ripening processes. The data analysis suggests that most genes with increased expression at the ripening stage were primarily involved in the metabolism of cofactors and vitamins, nucleotide metabolism, and carbohydrate metabolism. Significantly expressed genes from the young to mature stage were mainly associated with carbohydrate metabolism, amino acid metabolism, and cofactor and vitamin metabolism. The transcriptome data will serve as a foundation for understanding Durian fruit development-specific genes and could be helpful in fruit's trait improvement.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links