Displaying publications 21 - 25 of 25 in total

Abstract:
Sort:
  1. Zamora-Ros R, Knaze V, Rothwell JA, Hémon B, Moskal A, Overvad K, et al.
    Eur J Nutr, 2016 Jun;55(4):1359-75.
    PMID: 26081647 DOI: 10.1007/s00394-015-0950-x
    BACKGROUND/OBJECTIVES: Polyphenols are plant secondary metabolites with a large variability in their chemical structure and dietary occurrence that have been associated with some protective effects against several chronic diseases. To date, limited data exist on intake of polyphenols in populations. The current cross-sectional analysis aimed at estimating dietary intakes of all currently known individual polyphenols and total intake per class and subclass, and to identify their main food sources in the European Prospective Investigation into Cancer and Nutrition cohort.

    METHODS: Dietary data at baseline were collected using a standardized 24-h dietary recall software administered to 36,037 adult subjects. Dietary data were linked with Phenol-Explorer, a database with data on 502 individual polyphenols in 452 foods and data on polyphenol losses due to cooking and food processing.

    RESULTS: Mean total polyphenol intake was the highest in Aarhus-Denmark (1786 mg/day in men and 1626 mg/day in women) and the lowest in Greece (744 mg/day in men and 584 mg/day in women). When dividing the subjects into three regions, the highest intake of total polyphenols was observed in the UK health-conscious group, followed by non-Mediterranean (non-MED) and MED countries. The main polyphenol contributors were phenolic acids (52.5-56.9 %), except in men from MED countries and in the UK health-conscious group where they were flavonoids (49.1-61.7 %). Coffee, tea, and fruits were the most important food sources of total polyphenols. A total of 437 different individual polyphenols were consumed, including 94 consumed at a level >1 mg/day. The most abundant ones were the caffeoylquinic acids and the proanthocyanidin oligomers and polymers.

    CONCLUSION: This study describes the large number of dietary individual polyphenols consumed and the high variability of their intakes between European populations, particularly between MED and non-MED countries.

  2. Freisling H, Pisa PT, Ferrari P, Byrnes G, Moskal A, Dahm CC, et al.
    Eur J Nutr, 2016 Sep;55(6):2093-104.
    PMID: 26303194 DOI: 10.1007/s00394-015-1023-x
    PURPOSE: Various food patterns have been associated with weight change in adults, but it is unknown which combinations of nutrients may account for such observations. We investigated associations between main nutrient patterns and prospective weight change in adults.

    METHODS: This study includes 235,880 participants, 25-70 years old, recruited between 1992 and 2000 in 10 European countries. Intakes of 23 nutrients were estimated from country-specific validated dietary questionnaires using the harmonized EPIC Nutrient DataBase. Four nutrient patterns, explaining 67 % of the total variance of nutrient intakes, were previously identified from principal component analysis. Body weight was measured at recruitment and self-reported 5 years later. The relationship between nutrient patterns and annual weight change was examined separately for men and women using linear mixed models with random effect according to center controlling for confounders.

    RESULTS: Mean weight gain was 460 g/year (SD 950) and 420 g/year (SD 940) for men and women, respectively. The annual differences in weight gain per one SD increase in the pattern scores were as follows: principal component (PC) 1, characterized by nutrients from plant food sources, was inversely associated with weight gain in men (-22 g/year; 95 % CI -33 to -10) and women (-18 g/year; 95 % CI -26 to -11). In contrast, PC4, characterized by protein, vitamin B2, phosphorus, and calcium, was associated with a weight gain of +41 g/year (95 % CI +2 to +80) and +88 g/year (95 % CI +36 to +140) in men and women, respectively. Associations with PC2, a pattern driven by many micro-nutrients, and with PC3, a pattern driven by vitamin D, were less consistent and/or non-significant.

    CONCLUSIONS: We identified two main nutrient patterns that are associated with moderate but significant long-term differences in weight gain in adults.

  3. Merritt MA, Tzoulaki I, Tworoger SS, De Vivo I, Hankinson SE, Fernandes J, et al.
    Cancer Epidemiol Biomarkers Prev, 2015 Feb;24(2):466-71.
    PMID: 25662427 DOI: 10.1158/1055-9965.EPI-14-0970
    Data on the role of dietary factors in endometrial cancer development are limited and inconsistent. We applied a "nutrient-wide association study" approach to systematically evaluate dietary risk associations for endometrial cancer while controlling for multiple hypothesis tests using the false discovery rate (FDR) and validating the results in an independent cohort. We evaluated endometrial cancer risk associations for dietary intake of 84 foods and nutrients based on dietary questionnaires in three prospective studies, the European Prospective Investigation into Cancer and Nutrition (EPIC; N = 1,303 cases) followed by validation of nine foods/nutrients (FDR ≤ 0.10) in the Nurses' Health Studies (NHS/NHSII; N = 1,531 cases). Cox regression models were used to estimate HRs and 95% confidence intervals (CI). In multivariate adjusted comparisons of the extreme categories of intake at baseline, coffee was inversely associated with endometrial cancer risk (EPIC, median intake 750 g/day vs. 8.6; HR, 0.81; 95% CI, 0.68-0.97, Ptrend = 0.09; NHS/NHSII, median intake 1067 g/day vs. none; HR, 0.82; 95% CI, 0.70-0.96, Ptrend = 0.04). Eight other dietary factors that were associated with endometrial cancer risk in the EPIC study (total fat, monounsaturated fat, carbohydrates, phosphorus, butter, yogurt, cheese, and potatoes) were not confirmed in the NHS/NHSII. Our findings suggest that coffee intake may be inversely associated with endometrial cancer risk. Further data are needed to confirm these findings and to examine the mechanisms linking coffee intake to endometrial cancer risk to develop improved prevention strategies.
  4. Freisling H, Noh H, Slimani N, Chajès V, May AM, Peeters PH, et al.
    Eur J Nutr, 2018 Oct;57(7):2399-2408.
    PMID: 28733927 DOI: 10.1007/s00394-017-1513-0
    PURPOSE: There is inconsistent evidence regarding the relationship between higher intake of nuts, being an energy-dense food, and weight gain. We investigated the relationship between nut intake and changes in weight over 5 years.

    METHODS: This study includes 373,293 men and women, 25-70 years old, recruited between 1992 and 2000 from 10 European countries in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Habitual intake of nuts including peanuts, together defined as nut intake, was estimated from country-specific validated dietary questionnaires. Body weight was measured at recruitment and self-reported 5 years later. The association between nut intake and body weight change was estimated using multilevel mixed linear regression models with center/country as random effect and nut intake and relevant confounders as fixed effects. The relative risk (RR) of becoming overweight or obese after 5 years was investigated using multivariate Poisson regressions stratified according to baseline body mass index (BMI).

    RESULTS: On average, study participants gained 2.1 kg (SD 5.0 kg) over 5 years. Compared to non-consumers, subjects in the highest quartile of nut intake had less weight gain over 5 years (-0.07 kg; 95% CI -0.12 to -0.02) (P trend = 0.025) and had 5% lower risk of becoming overweight (RR 0.95; 95% CI 0.92-0.98) or obese (RR 0.95; 95% CI 0.90-0.99) (both P trend <0.008).

    CONCLUSIONS: Higher intake of nuts is associated with reduced weight gain and a lower risk of becoming overweight or obese.

  5. Mullee A, Romaguera D, Pearson-Stuttard J, Viallon V, Stepien M, Freisling H, et al.
    JAMA Intern Med, 2019 Nov 01;179(11):1479-1490.
    PMID: 31479109 DOI: 10.1001/jamainternmed.2019.2478
    IMPORTANCE: Soft drinks are frequently consumed, but whether this consumption is associated with mortality risk is unknown and has been understudied in European populations to date.

    OBJECTIVE: To examine the association between total, sugar-sweetened, and artificially sweetened soft drink consumption and subsequent total and cause-specific mortality.

    DESIGN, SETTING, AND PARTICIPANTS: This population-based cohort study involved participants (n = 451 743 of the full cohort) in the European Prospective Investigation into Cancer and Nutrition (EPIC), an ongoing, large multinational cohort of people from 10 European countries (Denmark, France, Germany, Greece, Italy, the Netherlands, Norway, Spain, Sweden, and the United Kingdom), with participants recruited between January 1, 1992, and December 31, 2000. Excluded participants were those who reported cancer, heart disease, stroke, or diabetes at baseline; those with implausible dietary intake data; and those with missing soft drink consumption or follow-up information. Data analyses were performed from February 1, 2018, to October 1, 2018.

    EXPOSURE: Consumption of total, sugar-sweetened, and artificially sweetened soft drinks.

    MAIN OUTCOMES AND MEASURES: Total mortality and cause-specific mortality. Hazard ratios (HRs) and 95% CIs were estimated using multivariable Cox proportional hazards regression models adjusted for other mortality risk factors.

    RESULTS: In total, 521 330 individuals were enrolled. Of this total, 451 743 (86.7%) were included in the study, with a mean (SD) age of 50.8 (9.8) years and with 321 081 women (71.1%). During a mean (range) follow-up of 16.4 (11.1 in Greece to 19.2 in France) years, 41 693 deaths occurred. Higher all-cause mortality was found among participants who consumed 2 or more glasses per day (vs consumers of <1 glass per month) of total soft drinks (hazard ratio [HR], 1.17; 95% CI, 1.11-1.22; P 

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links