Displaying publications 21 - 40 of 104 in total

Abstract:
Sort:
  1. Foo KY, Hameed BH
    Adv Colloid Interface Sci, 2010 Sep 15;159(2):130-43.
    PMID: 20673570 DOI: 10.1016/j.cis.2010.06.002
    Water scarcity and pollution rank equal to climate change as the most urgent environmental turmoil for the 21st century. To date, the percolation of textile effluents into the waterways and aquifer systems, remain an intricate conundrum abroad the nations. With the renaissance of activated carbon, there has been a steadily growing interest in the research field. Recently, the adoption of titanium dioxide, a prestigious advanced photo-catalyst which formulates the new growing branch of activated carbon composites for enhancement of adsorption rate and discoloration capacity, has attracted stern consideration and supports worldwide. Confirming the assertion, this paper presents a state of art review of titanium dioxide/activated carbon composites technology, its fundamental background studies, and environmental implications. Moreover, its major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of activated carbons composites material represents a potentially viable and powerful tool, leading to the plausible improvement of environmental conservation.
  2. Akpan UG, Hameed BH
    J Colloid Interface Sci, 2011 May 1;357(1):168-78.
    PMID: 21345441 DOI: 10.1016/j.jcis.2011.01.014
    Titanium dioxide (TiO(2)) with an enhanced photocatalytic activity was developed by doping it with calcium ions through a sol-gel method. The developed photocatalysts were characterized by Fourier transform infrared (FTIR) spectroscopy, N(2) physisorption, X-ray photoelectron spectroscopy (XPS), and X-ray diffraction. Their surface morphologies were studied using surface scanning electron microscopy (SEM). The XPS analyses confirmed the presence of Ti, O, Ca, and C in the Ca-doped TiO(2) sample. The activities of the catalysts were evaluated by photocatalytic degradation of an azo dye, acid red 1 (AR1), using UV light irradiation. The results of the investigations revealed that the samples calcined at 300 °C for 3.6h in a cyclic (2 cycles) mode had the best performance. Lower percentage dopant, 0.3-1.0 wt.%, enhanced the photocatalytic activity of TiO(2), with the best at 0.5 wt.% Ca-TiO(2). The performance of 0.5 wt.% Ca-TiO(2) in the degradation of AR1 was far superior to that of a commercial anatase TiO(2) Sigma product CAS No. 1317-70-0. The effect of pH on the degradation of AR1 was studied, and the pH of the dye solution exerted a great influence on the degradation of the dye.
  3. Foo KY, Hameed BH
    Adv Colloid Interface Sci, 2011 Feb 17;162(1-2):22-8.
    PMID: 21035101 DOI: 10.1016/j.cis.2010.09.003
    Over the past couple of years, the resurgence of placing an effective and sustainable amendment to combat against the auxiliary industrial entities, remains a highly contested agenda from a global point. With the renaissance of activated carbon, there has been a steadily growing interest in the research field. Recently, the adoption of zeolite composite, a prestigious advanced catalyst which formulates the enhancement of adsorption rate and hydrogen storage capability, has fore fronted to be a new growing branch in the scientific community. Confirming the assertion, this paper presents a state of art review of activated carbon/zeolite composite technology, its fundamental background studies, and environmental implications. Moreover, its major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of activated carbon/zeolite composite represents a potentially viable and powerful tool, leading to the plausible improvement of environmental preservation.
  4. Foo KY, Hameed BH
    J Hazard Mater, 2009 Dec 30;172(2-3):523-31.
    PMID: 19695771 DOI: 10.1016/j.jhazmat.2009.07.091
    Concern about environmental protection has increased over the years from a global viewpoint. To date, the infiltration of oil palm ash into the groundwater tables and aquifer systems which poses a potential risk and significant hazards towards the public health and ecosystems, remain an intricate challenge for the 21st century. With the revolution of biomass reutilization strategy, there has been a steadily growing interest in this research field. Confirming the assertion, this paper presents a state of art review of oil palm ash industry, its fundamental characteristics and environmental implications. Moreover, the key advance of its implementations, major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of oil palm ash in numerous field of application represents a plausible and powerful circumstance, for accruing the worldwide environmental benefit and shaping the national economy.
  5. Foo KY, Hameed BH
    J Hazard Mater, 2009 Oct 30;170(2-3):552-9.
    PMID: 19501461 DOI: 10.1016/j.jhazmat.2009.05.057
    Stepping into the new globalizes and paradigm shifted era, a huge revolution has been undergone by the electrochemical industry. From a humble candidate of the superconductor resources, today electrosorption has demonstrated its wide variety of usefulness, almost in every part of the environmental conservation. With the renaissance of activated carbon (AC), there has been a steadily growing interest in this research field. The paper presents a state of art review of electrosorption technology, its background studies, fundamental chemistry and working principles. Moreover, recent development of the activated carbon assisted electrosorption process, its major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of electrosorption in the field of adsorption science represents a potentially viable and powerful tool, leading to the superior improvement of pollution control and environmental preservation.
  6. Foo KY, Hameed BH
    J Hazard Mater, 2009 Nov 15;171(1-3):54-60.
    PMID: 19577363 DOI: 10.1016/j.jhazmat.2009.06.038
    Water scarcity and pollution rank equal to climate change as the most urgent environmental issue for the 21st century. To date, the percolation landfill leachate into the groundwater tables and aquifer systems which poses a potential risk and potential hazards towards the public health and ecosystems, remains an aesthetic concern and consideration abroad the nations. Arising from the steep enrichment of globalization and metropolitan growth, numerous mitigating approaches and imperative technologies have currently drastically been addressed and confronted. Confirming the assertion, this paper presents a state of art review of leachate treatment technologies, its fundamental background studies, and environmental implications. Moreover, the key advance of activated carbons adsorption, its major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of activated carbons adsorption represents a potentially viable and powerful tool, leading to the superior improvement of environmental conservation.
  7. Salman JM, Hameed BH
    J Hazard Mater, 2010 Apr 15;176(1-3):814-9.
    PMID: 20031311 DOI: 10.1016/j.jhazmat.2009.11.107
    In this work, activated carbon was prepared from banana stalks (BSAC) waste to remove the insecticide carbofuran from aqueous solutions. The effects of contact time, initial carbofuran concentration, solution pH and temperature (30, 40 and 50 degrees C) were investigated. Adsorption isotherm, kinetics and thermodynamics of carbofuran on BSAC were studied. Equilibrium data were fitted to the Langmuir, Freundlich and Temkin isotherm models and the data best represented by the Langmuir isotherm. Thermodynamic parameters such as standard enthalpy (DeltaH(o)), standard entropy (DeltaS(o)) and standard free energy (DeltaG(o)) were evaluated. Regeneration efficiency of spent BSAC was studied using ethanol as a solvent. The efficiency was found to be in the range of 96.97-97.35%. The results indicated that the BSAC has good regeneration and reusability characteristics and can be used as alternative to present commercial activated carbon.
  8. Ahmad AA, Hameed BH
    J Hazard Mater, 2010 Mar 15;175(1-3):298-303.
    PMID: 19883979 DOI: 10.1016/j.jhazmat.2009.10.003
    In this work, the adsorption potential of bamboo waste based granular activated carbon (BGAC) to remove C.I. Reactive Black (RB5) from aqueous solution was investigated using fixed-bed adsorption column. The effects of inlet RB5 concentration (50-200mg/L), feed flow rate (10-30 mL/min) and activated carbon bed height (40-80 mm) on the breakthrough characteristics of the adsorption system were determined. The highest bed capacity of 39.02 mg/g was obtained using 100mg/L inlet dye concentration, 80 mm bed height and 10 mL/min flow rate. The adsorption data were fitted to three well-established fixed-bed adsorption models namely, Adam's-Bohart, Thomas and Yoon-Nelson models. The results fitted well to the Thomas and Yoon-Nelson models with coefficients of correlation R(2)>or=0.93 at different conditions. The BGAC was shown to be suitable adsorbent for adsorption of RB5 using fixed-bed adsorption column.
  9. Foo KY, Hameed BH
    J Hazard Mater, 2010 Mar 15;175(1-3):1-11.
    PMID: 19879688 DOI: 10.1016/j.jhazmat.2009.10.014
    Concern about environmental protection has increased over the years from a global viewpoint. To date, the percolation of pesticide waste into the groundwater tables and aquifer systems remains an aesthetic issue towards the public health and food chain interference. With the renaissance of activated carbon, there has been a consistent growing interest in this research field. Confirming the assertion, this paper presents a state of art review of pesticide agrochemical practice, its fundamental characteristics, background studies and environmental implications. Moreover, the key advance of activated carbon adsorption, its major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of activated carbon adsorption represents a plausible and powerful circumstance, leading to the superior improvement of environmental preservation.
  10. Salman JM, Hameed BH
    J Hazard Mater, 2010 Mar 15;175(1-3):133-7.
    PMID: 19879687 DOI: 10.1016/j.jhazmat.2009.09.139
    Oil palm fronds (OPF) were used to prepare activated carbon (PFAC) using physiochemical activation method, which consisted of potassium hydroxide (KOH) treatment and carbon dioxide gasification. The effects of the preparation variables, which were activation temperature, activation time and chemical impregnation ratios (KOH: char by weight), on the carbon yield and bentazon removal were investigated. Based on the central composite design (CCD), two factor interaction (2FI) and quadratic models were, respectively, employed to correlate the PFAC preparation variables to the bentazon removal and carbon yield. From the analysis of variance (ANOVA), the most influential factor on each experimental design response was identified. The optimum conditions for preparing activated carbon from OPF were found as follows: activation temperature of 850 degrees C, activation time of 1h and KOH:char ratio of 3.75:1. The predicted and experimental results for removal of bentazon and yield of PFAC were 99.85%, 20.5 and 98.1%, 21.6%, respectively.
  11. Ahmad AA, Hameed BH
    J Hazard Mater, 2010 Jan 15;173(1-3):487-93.
    PMID: 19765899 DOI: 10.1016/j.jhazmat.2009.08.111
    This study deals with the use of activated carbon prepared from bamboo waste (BMAC), as an adsorbent for the removal of chemical oxygen demand (COD) and color of cotton textile mill wastewater. Bamboo waste was used to prepare activated carbon by chemical activation using phosphoric acid (H(3)PO(4)) as chemical agent. The effects of three preparation variables activation temperature, activation time and H(3)PO(4):precursor (wt%) impregnation ratio on the color and COD removal were investigated. Based on the central composite design (CCD) and quadratic models were developed to correlate the preparation variables to the color and COD. From the analysis of variance (ANOVA), the most influential factor on each experimental design response was identified. The optimum condition was obtained by using temperature of 556 degrees C, activation time of 2.33 h and chemical impregnation ratio of 5.24, which resulted in 93.08% of color and 73.98% of COD.
  12. Ahmad AA, Hameed BH
    J Hazard Mater, 2009 Dec 30;172(2-3):1538-43.
    PMID: 19740605 DOI: 10.1016/j.jhazmat.2009.08.025
    In this work, activated carbon was prepared from bamboo waste by chemical activation method using phosphoric acid as activating agent. The activated carbon was evaluated for chemical oxygen demand (COD) and color reduction of a real textile mill effluent. A maximum reduction in color and COD of 91.84% and 75.21%, respectively was achieved. As a result, the standard B discharge limit of color and COD under the Malaysian Environmental Quality act 1974 was met. The Freundlich isotherm model was found best to describe the obtained equilibrium adsorption data at 30 degrees C. The Brunauer-Emmett-Teller (BET) surface area, total pore volume and the average pore diameter were 988.23 m(2)/g, 0.69 cm(3)/g and 2.82 nm, respectively. Various functional groups on the prepared bamboo activated carbon (BAC) were determined from the FTIR results.
  13. Foo KY, Hameed BH
    Adv Colloid Interface Sci, 2009 Nov 30;152(1-2):39-47.
    PMID: 19836724 DOI: 10.1016/j.cis.2009.09.005
    Concern about environmental protection has aroused over the years from a global viewpoint. To date, the ever-increasing importance of biomass as the energy and material resources has lately been accounted by the rising prices for the crude petroleum oil. Rice husk ash, the most appropriate representative of the high ash biomass waste, is currently obtaining sufficient attraction, owning to its wide usefulness and potentiality in environmental conservation. Confirming the assertion, this paper presents a state of the art review of the rice milling industry, its background studies, fundamental properties and industrial applications. Moreover, the key advance on the preparation of novel adsorbents, its major challenges together with the future expectation has been highlighted and discussed. Conclusively, the expanding of rice husk ash in the field of adsorption science represents a viable and powerful tool, leading to the superior improvement of pollution control and environmental preservation.
  14. Akpan UG, Hameed BH
    J Hazard Mater, 2009 Oct 30;170(2-3):520-9.
    PMID: 19505759 DOI: 10.1016/j.jhazmat.2009.05.039
    This paper presents the review of the effects of operating parameters on the photocatalytic degradation of textile dyes using TiO2-based photocatalysts. It further examines various methods used in the preparations of the considered photocatalysts. The findings revealed that various parameters, such as the initial pH of the solution to be degraded, oxidizing agents, temperature at which the catalysts must be calcined, dopant(s) content and catalyst loading exert their individual influence on the photocatalytic degradation of any dye in wastewaters. It was also found out that sol-gel method is widely used in the production of TiO2-based photocatalysts because of the advantage derived from its ability to synthesize nanosized crystallized powder of the photocatalysts of high purity at relatively low temperature.
  15. Daud NK, Hameed BH
    J Hazard Mater, 2010 Apr 15;176(1-3):1118-21.
    PMID: 20042286 DOI: 10.1016/j.jhazmat.2009.11.134
    Decolorization of reactive azo dye, reactive black 5 (RB5), was conducted using Fe(III) immobilized on Montmorillonite K10 (MK10) as a catalyst in the presence of H(2)O(2) using Fenton-like oxidation process. The effect of different parameters such as iron ions loading on supported catalyst, catalyst dosage, initial pH of dye solution, initial concentration of H(2)O(2) and dye and reaction temperature on the decolorization efficiency of the process were studied. The results indicated that by using 12 mM of H(2)O(2) and 3.50 g L(-1) of the 0.11 wt.% Fe(III) oxide on MK10 catalyst at pH of 2.5, 99% of decolorization efficiency was achieved within 150 min in a batch process.
  16. Daud NK, Hameed BH
    J Hazard Mater, 2010 Apr 15;176(1-3):938-44.
    PMID: 20042285 DOI: 10.1016/j.jhazmat.2009.11.130
    The decolorization of Acid Red 1 (AR1) in aqueous solution was investigated by Fenton-like process. The effect of different reaction parameters such as different iron ions loading on rice husk ash (RHA), dosage of catalyst, initial pH, the initial hydrogen peroxide concentration ([H(2)O(2)](o)), the initial concentration of AR1 ([AR1](o)) and the reaction temperature on the decolorization of AR1 was studied. The optimal reacting conditions were found to be 0.070 wt.% of iron (III) oxide loading on RHA, dosage of catalyst=5.0 g L(-1), initial pH=2.0, [H(2)O(2)](o)=8 mM, [AR1](o)=50 mg L(-1) at temperature 30 degrees C. Under optimal condition, 96% decolorization efficiency of AR1 was achieved within 120 min of reaction.
  17. Yuen FK, Hameed BH
    Adv Colloid Interface Sci, 2009 Jul 30;149(1-2):19-27.
    PMID: 19187928 DOI: 10.1016/j.cis.2008.12.005
    To date, microwave energy has been widely developed and applied to almost every field of chemistry. In many cases, microwave technology has proven to remarkably reducing costs, accelerating reaction rates, improving yields and selectively activating. This paper presents a state of art review of microwave technology, its background studies, fundamental chemistry and industrial applications. With the renaissance of activated carbon, there has been a steadily growing interest in this research field. The review provides a summary on recent development in preparation and regeneration of activated carbons. The key advance of introducing microwave energy has been highlighted relative to conventional methods. Moreover, the major drawbacks, challenges with its future expectation are presented and discussed. Conclusively, microwave energy is predicted to be a potentially viable and powerful replacement for fuel technology in various areas, while its progress represents an expanding field in the area of adsorption science.
  18. Hameed BH, Lee TW
    J Hazard Mater, 2009 May 30;164(2-3):468-72.
    PMID: 18804913 DOI: 10.1016/j.jhazmat.2008.08.018
    In this study, advanced oxidation process utilizing Fenton's reagent was investigated for degradation of malachite green (MG). The effects of different reaction parameters such as the initial MG concentration, initial pH, the initial hydrogen peroxide concentration, the initial ferrous concentration and the reaction temperature on the oxidative degradation of MG have been investigated. The optimal reacting conditions were experimentally found to be pH 3.40, initial hydrogen peroxide concentration=0.50mM and initial ferrous concentration=0.10mM for initial MG concentration of 20mg/L at 30 degrees C. Under optimal conditions, 99.25% degradation efficiency of dye in aqueous solution was achieved after 60 min of reaction.
  19. Hameed BH, Rahman AA
    J Hazard Mater, 2008 Dec 30;160(2-3):576-81.
    PMID: 18434009 DOI: 10.1016/j.jhazmat.2008.03.028
    Activated carbon derived from rattan sawdust (ACR) was evaluated for its ability to remove phenol from an aqueous solution in a batch process. Equilibrium studies were conducted in the range of 25-200mg/L initial phenol concentrations, 3-10 solution pH and at temperature of 30 degrees C. The experimental data were analyzed by the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models. Equilibrium data fitted well to the Langmuir model with a maximum adsorption capacity of 149.25mg/g. The dimensionless separation factor RL revealed the favorable nature of the isotherm of the phenol-activated carbon system. The pseudo-second-order kinetic model best described the adsorption process. The results proved that the prepared activated carbon was an effective adsorbent for removal of phenol from aqueous solution.
  20. Hameed BH, Ahmad AA
    J Hazard Mater, 2009 May 30;164(2-3):870-5.
    PMID: 18838221 DOI: 10.1016/j.jhazmat.2008.08.084
    The potential of garlic peel (GP), agricultural waste, to remove methylene blue (MB) from aqueous solution was evaluated in a batch process. Experiments were carried out as function of contact time, initial concentration (25-200mg/L), pH (4-12) and temperature (303, 313 and 323 K). Adsorption isotherms were modeled with the Langmuir, Freundlich, and Temkin isotherms. The data fitted well with the Freundlich isotherm. The maximum monolayer adsorption capacities were found to be 82.64, 123.45, and 142.86 mg/g at 303, 313, and 323 K, respectively. The kinetic data were analyzed using pseudo-first-order and pseudo-second-order models. The results indicated that the garlic peel could be an alternative for more costly adsorbents used for dye removal.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links