Displaying publications 21 - 33 of 33 in total

Abstract:
Sort:
  1. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, Dragicevic M, et al.
    Eur Phys J C Part Fields, 2015 06 26;75(6):288.
    PMID: 26146483
    The inclusive jet cross section for proton-proton collisions at a centre-of-mass energy of 7[Formula: see text] was measured by the CMS Collaboration at the LHC with data corresponding to an integrated luminosity of 5.0[Formula: see text]. The measurement covers a phase space up to 2[Formula: see text] in jet transverse momentum and 2.5 in absolute jet rapidity. The statistical precision of these data leads to stringent constraints on the parton distribution functions of the proton. The data provide important input for the gluon density at high fractions of the proton momentum and for the strong coupling constant at large energy scales. Using predictions from perturbative quantum chromodynamics at next-to-leading order, complemented with electroweak corrections, the constraining power of these data is investigated and the strong coupling constant at the Z boson mass [Formula: see text] is determined to be [Formula: see text], which is in agreement with the world average.
  2. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, Dragicevic M, et al.
    Eur Phys J C Part Fields, 2015 10 29;75(10):511.
    PMID: 26549982
    Measurements of the [Formula: see text][Formula: see text] production cross sections in proton-proton collisions at center-of-mass energies of 7 and 8[Formula: see text] are presented. Candidate events for the leptonic decay mode [Formula: see text], where [Formula: see text] denotes an electron or a muon, are reconstructed and selected from data corresponding to an integrated luminosity of 5.1 (19.6)[Formula: see text] at 7 (8)[Formula: see text] collected with the CMS experiment. The measured cross sections, [Formula: see text] at 7[Formula: see text], and [Formula: see text] at 8[Formula: see text], are in good agreement with the standard model predictions with next-to-leading-order accuracy. The selected data are analyzed to search for anomalous triple gauge couplings involving the [Formula: see text][Formula: see text] final state. In the absence of any deviation from the standard model predictions, limits are set on the relevant parameters. These limits are then combined with the previously published CMS results for [Formula: see text][Formula: see text] in 4[Formula: see text] final states, yielding the most stringent constraints on the anomalous couplings.
  3. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, Dragicevic M, et al.
    Eur Phys J C Part Fields, 2015 05 29;75(5):237.
    PMID: 26069462
    Transverse momentum spectra of charged particles are measured by the CMS experiment at the CERN LHC in pPb collisions at [Formula: see text][Formula: see text], in the range [Formula: see text][Formula: see text] and pseudorapidity [Formula: see text] in the proton-nucleon center-of-mass frame. For [Formula: see text][Formula: see text], the charged-particle production is asymmetric about [Formula: see text], with smaller yield observed in the direction of the proton beam, qualitatively consistent with expectations from shadowing in nuclear parton distribution functions (nPDF). A pp reference spectrum at [Formula: see text][Formula: see text] is obtained by interpolation from previous measurements at higher and lower center-of-mass energies. The [Formula: see text] distribution measured in pPb collisions shows an enhancement of charged particles with [Formula: see text][Formula: see text] compared to expectations from the pp reference. The enhancement is larger than predicted by perturbative quantum chromodynamics calculations that include antishadowing modifications of nPDFs.
  4. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, Dragicevic M, et al.
    Eur Phys J C Part Fields, 2015 07 01;75(7):302.
    PMID: 26190937
    This paper presents distributions of topological observables in inclusive three- and four-jet events produced in pp collisions at a centre-of-mass energy of 7[Formula: see text] with a data sample collected by the CMS experiment corresponding to a luminosity of 5.1[Formula: see text]. The distributions are corrected for detector effects, and compared with several event generators based on two- and multi-parton matrix elements at leading order. Among the considered calculations, MadGraph interfaced with pythia6 displays the overall best agreement with data.
  5. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2016 Apr 29;116(17):172302.
    PMID: 27176516 DOI: 10.1103/PhysRevLett.116.172302
    Results on two-particle angular correlations for charged particles produced in pp collisions at a center-of-mass energy of 13 TeV are presented. The data were taken with the CMS detector at the LHC and correspond to an integrated luminosity of about 270  nb^{-1}. The correlations are studied over a broad range of pseudorapidity (|η|<2.4) and over the full azimuth (ϕ) as a function of charged particle multiplicity and transverse momentum (p_{T}). In high-multiplicity events, a long-range (|Δη|>2.0), near-side (Δϕ≈0) structure emerges in the two-particle Δη-Δϕ correlation functions. The magnitude of the correlation exhibits a pronounced maximum in the range 1.0
  6. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2017;77(1):15.
    PMID: 28260978 DOI: 10.1140/epjc/s10052-016-4504-z
    A measurement of the top quark pair production ([Formula: see text]) cross section in proton-proton collisions at the centre-of-mass energy of 8[Formula: see text] is presented using data collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 19.6[Formula: see text]. This analysis is performed in the [Formula: see text] decay channels with one isolated, high transverse momentum electron or muon and at least four jets, at least one of which is required to be identified as originating from hadronization of a b quark. The calibration of the jet energy scale and the efficiency of b jet identification are determined from data. The measured [Formula: see text] cross section is [Formula: see text]. This measurement is compared with an analysis of 7[Formula: see text] data, corresponding to an integrated luminosity of 5.0[Formula: see text], to determine the ratio of 8[Formula: see text] to 7[Formula: see text] cross sections, which is found to be [Formula: see text]. The measurements are in agreement with QCD predictions up to next-to-next-to-leading order.
  7. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2017;77(11):751.
    PMID: 31999282 DOI: 10.1140/epjc/s10052-017-5140-y
    Measurements of the associated production of a
    Z
    boson with at least one jet originating from a b quark in proton-proton collisions at


    s

    =
    8

    TeV

    are presented. Differential cross sections are measured with data collected by the CMS experiment corresponding to an integrated luminosity of 19.8



    fb

    -
    1



    .
    Z
    bosons are reconstructed through their decays to electrons and muons. Cross sections are measured as a function of observables characterizing the kinematics of the
    b
    jet and the
    Z
    boson. Ratios of differential cross sections for the associated production with at least one
    b
    jet to the associated production with any jet are also presented. The production of a
    Z
    boson with at least two
    b
    jets is investigated, and differential cross sections are measured for the dijet system. Results are compared to theoretical predictions, testing two different flavour schemes for the choice of initial-state partons.
  8. CMS Collaboration, Chatrchyan S, Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, et al.
    Eur Phys J C Part Fields, 2014 11 12;74(11):3129.
    PMID: 25814874
    A measurement of differential cross sections for the production of a pair of isolated photons in proton-proton collisions at [Formula: see text] is presented. The data sample corresponds to an integrated luminosity of 5.0[Formula: see text] collected with the CMS detector. A data-driven isolation template method is used to extract the prompt diphoton yield. The measured cross section for two isolated photons, with transverse energy above 40 and 25[Formula: see text] respectively, in the pseudorapidity range [Formula: see text], [Formula: see text] and with an angular separation [Formula: see text], is [Formula: see text][Formula: see text]. Differential cross sections are measured as a function of the diphoton invariant mass, the diphoton transverse momentum, the azimuthal angle difference between the two photons, and the cosine of the polar angle in the Collins-Soper reference frame of the diphoton system. The results are compared to theoretical predictions at leading, next-to-leading, and next-to-next-to-leading order in quantum chromodynamics.
  9. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, Dragicevic M, et al.
    Eur Phys J C Part Fields, 2015 02 10;75(2):66.
    PMID: 25838791
    The purely electroweak (EW) cross section for the production of two jets in association with a Z boson, in proton-proton collisions at [Formula: see text], is measured using data recorded by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of 19.7[Formula: see text]. The electroweak cross section for the [Formula: see text] final state (with [Formula: see text] or [Formula: see text] and j representing the quarks produced in the hard interaction) in the kinematic region defined by [Formula: see text][Formula: see text], [Formula: see text][Formula: see text], transverse momentum [Formula: see text][Formula: see text], and pseudorapidity [Formula: see text], is found to be [Formula: see text], in agreement with the standard model prediction. The associated jet activity of the selected events is studied, in particular in a signal-enriched region of phase space, and the measurements are found to be in agreement with QCD predictions.
  10. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2016;76(6):317.
    PMID: 28775662 DOI: 10.1140/epjc/s10052-016-4149-y
    A search for narrow resonances decaying to an electron and a muon is presented. The [Formula: see text] [Formula: see text] mass spectrum is also investigated for non-resonant contributions from the production of quantum black holes (QBHs). The analysis is performed using data corresponding to an integrated luminosity of 19.7[Formula: see text] collected in proton-proton collisions at a centre-of-mass energy of 8[Formula: see text] with the CMS detector at the LHC. With no evidence for physics beyond the standard model in the invariant mass spectrum of selected [Formula: see text] pairs, upper limits are set at 95 [Formula: see text] confidence level on the product of cross section and branching fraction for signals arising in theories with charged lepton flavour violation. In the search for narrow resonances, the resonant production of a [Formula: see text] sneutrino in R-parity violating supersymmetry is considered. The [Formula: see text] sneutrino is excluded for masses below 1.28[Formula: see text] for couplings [Formula: see text], and below 2.30[Formula: see text] for [Formula: see text] and [Formula: see text]. These are the most stringent limits to date from direct searches at high-energy colliders. In addition, the resonance searches are interpreted in terms of a model with heavy partners of the [Formula: see text] boson and the photon. In a framework of TeV-scale quantum gravity based on a renormalization of Newton's constant, the search for non-resonant contributions to the [Formula: see text] [Formula: see text] mass spectrum excludes QBH production below a threshold mass [Formula: see text] of 1.99[Formula: see text]. In models that invoke extra dimensions, the bounds range from 2.36[Formula: see text] for one extra dimension to 3.63[Formula: see text] for six extra dimensions. This is the first search for QBHs decaying into the [Formula: see text] [Formula: see text] final state.
  11. Chatrchyan S, Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, et al.
    Eur Phys J C Part Fields, 2014;74(8):2980.
    PMID: 25814906
    A search for invisible decays of Higgs bosons is performed using the vector boson fusion and associated ZH production modes. In the ZH mode, the Z boson is required to decay to a pair of charged leptons or a [Formula: see text] quark pair. The searches use the 8 [Formula: see text] pp collision dataset collected by the CMS detector at the LHC, corresponding to an integrated luminosity of up to 19.7 [Formula: see text]. Certain channels include data from 7 [Formula: see text] collisions corresponding to an integrated luminosity of 4.9 [Formula: see text]. The searches are sensitive to non-standard-model invisible decays of the recently observed Higgs boson, as well as additional Higgs bosons with similar production modes and large invisible branching fractions. In all channels, the observed data are consistent with the expected standard model backgrounds. Limits are set on the production cross section times invisible branching fraction, as a function of the Higgs boson mass, for the vector boson fusion and ZH production modes. By combining all channels, and assuming standard model Higgs boson cross sections and acceptances, the observed (expected) upper limit on the invisible branching fraction at [Formula: see text] [Formula: see text] is found to be 0.58 (0.44) at 95 % confidence level. We interpret this limit in terms of a Higgs-portal model of dark matter interactions.
  12. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, Dragicevic M, et al.
    Eur Phys J C Part Fields, 2014;74(10):3076.
    PMID: 25814871
    Observation of the diphoton decay mode of the recently discovered Higgs boson and measurement of some of its properties are reported. The analysis uses the entire dataset collected by the CMS experiment in proton-proton collisions during the 2011 and 2012 LHC running periods. The data samples correspond to integrated luminosities of 5.1[Formula: see text]at [Formula: see text] and 19.7[Formula: see text]at 8[Formula: see text] . A clear signal is observed in the diphoton channel at a mass close to 125[Formula: see text] with a local significance of [Formula: see text], where a significance of [Formula: see text] is expected for the standard model Higgs boson. The mass is measured to be [Formula: see text] , and the best-fit signal strength relative to the standard model prediction is [Formula: see text][Formula: see text][Formula: see text]. Additional measurements include the signal strength modifiers associated with different production mechanisms, and hypothesis tests between spin-0 and spin-2 models.
  13. CMS Collaboration, Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, et al.
    Eur Phys J C Part Fields, 2014;74(11):3149.
    PMID: 25814876 DOI: 10.1140/epjc/s10052-014-3149-z
    A search for heavy, right-handed neutrinos, [Formula: see text] ([Formula: see text]), and right-handed [Formula: see text] bosons, which arise in the left-right symmetric extensions of the standard model, has been performed by the CMS experiment. The search was based on a sample of two lepton plus two jet events collected in proton-proton collisions at a center-of-mass energy of 8[Formula: see text] corresponding to an integrated luminosity of 19.7 [Formula: see text]. For models with strict left-right symmetry, and assuming only one [Formula: see text] flavor contributes significantly to the [Formula: see text] decay width, the region in the two-dimensional [Formula: see text] mass plane excluded at a 95 % confidence level extends to approximately [Formula: see text] and covers a large range of neutrino masses below the [Formula: see text] boson mass, depending on the value of [Formula: see text]. This search significantly extends the [Formula: see text] exclusion region beyond previous results.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links