Displaying publications 21 - 24 of 24 in total

Abstract:
Sort:
  1. Jiamsakul A, Polizzotto M, Wen-Wei Ku S, Tanuma J, Hui E, Chaiwarith R, et al.
    J Acquir Immune Defic Syndr, 2019 03 01;80(3):301-307.
    PMID: 30531303 DOI: 10.1097/QAI.0000000000001918
    BACKGROUND: Hematological malignancies have continued to be highly prevalent among people living with HIV (PLHIV). This study assessed the occurrence of, risk factors for, and outcomes of hematological and nonhematological malignancies in PLHIV in Asia.

    METHODS: Incidence of malignancy after cohort enrollment was evaluated. Factors associated with development of hematological and nonhematological malignancy were analyzed using competing risk regression and survival time using Kaplan-Meier.

    RESULTS: Of 7455 patients, 107 patients (1%) developed a malignancy: 34 (0.5%) hematological [0.08 per 100 person-years (/100PY)] and 73 (1%) nonhematological (0.17/100PY). Of the hematological malignancies, non-Hodgkin lymphoma was predominant (n = 26, 76%): immunoblastic (n = 6, 18%), Burkitt (n = 5, 15%), diffuse large B-cell (n = 5, 15%), and unspecified (n = 10, 30%). Others include central nervous system lymphoma (n = 7, 21%) and myelodysplastic syndrome (n = 1, 3%). Nonhematological malignancies were mostly Kaposi sarcoma (n = 12, 16%) and cervical cancer (n = 10, 14%). Risk factors for hematological malignancy included age >50 vs. ≤30 years [subhazard ratio (SHR) = 6.48, 95% confidence interval (CI): 1.79 to 23.43] and being from a high-income vs. a lower-middle-income country (SHR = 3.97, 95% CI: 1.45 to 10.84). Risk was reduced with CD4 351-500 cells/µL (SHR = 0.20, 95% CI: 0.05 to 0.74) and CD4 >500 cells/µL (SHR = 0.14, 95% CI: 0.04 to 0.78), compared to CD4 ≤200 cells/µL. Similar risk factors were seen for nonhematological malignancy, with prior AIDS diagnosis showing a weak association. Patients diagnosed with a hematological malignancy had shorter survival time compared to patients diagnosed with a nonhematological malignancy.

    CONCLUSIONS: Nonhematological malignancies were common but non-Hodgkin lymphoma was more predominant in our cohort. PLHIV from high-income countries were more likely to be diagnosed, indicating a potential underdiagnosis of cancer in low-income settings.

  2. Pasayan MKU, S Mationg ML, Boettiger D, Lam W, Zhang F, Ku SW, et al.
    J Acquir Immune Defic Syndr, 2019 04 01;80(4):436-443.
    PMID: 30550488 DOI: 10.1097/QAI.0000000000001933
    BACKGROUND: Mycobacterium avium complex prophylaxis is recommended for patients with advanced HIV infection. With the decrease in incidence of disseminated Mycobacterium avium complex infection and the availability of antiretroviral therapy (ART), the benefits of macrolide prophylaxis were investigated. This study examined the impact of macrolide prophylaxis on AIDS-defining conditions and HIV-associated mortality in a cohort of HIV-infected patients on ART.

    METHODS: Patients from TREAT Asia HIV Observational Database (September 2015 data transfer) aged 18 years and older with a CD4 count <50 cells/mm at ART initiation were included. The effect of macrolide prophylaxis on HIV-associated mortality or AIDS-defining conditions (as a combined outcome) and HIV-associated mortality alone were evaluated using competing risk regression. Sensitivity analysis was conducted in patients with a CD4 <100 cells/mm at ART initiation.

    RESULTS: Of 1345 eligible patients, 10.6% received macrolide prophylaxis. The rate of the combined outcome was 7.35 [95% confidence interval (CI): 6.04 to 8.95] per 100 patient-years, whereas the rate of HIV-associated mortality was 3.14 (95% CI: 2.35 to 4.19) per 100 patient-years. Macrolide use was associated with a significantly decreased risk of HIV-associated mortality (hazard ratio 0.10, 95% CI: 0.01 to 0.80, P = 0.031) but not with the combined outcome (hazard ratio 0.86, 95% CI: 0.32 to 2.229, P = 0.764). Sensitivity analyses showed consistent results among patients with a CD4 <100 cells/mm at ART initiation.

    CONCLUSIONS: Macrolide prophylaxis is associated with improved survival among Asian HIV-infected patients with low CD4 cell counts and on ART. This study suggests the increased usage and coverage of macrolide prophylaxis among people living with HIV in Asia.

  3. Jiamsakul A, Kiertiburanakul S, Ng OT, Chaiwarith R, Wong W, Ditangco R, et al.
    HIV Med, 2019 08;20(7):439-449.
    PMID: 30980495 DOI: 10.1111/hiv.12734
    OBJECTIVES: With earlier antiretroviral therapy (ART) initiation, time spent in HIV care is expected to increase. We aimed to investigate loss to follow-up (LTFU) in Asian patients who remained in care 5 years after ART initiation.

    METHODS: Long-term LTFU was defined as LTFU occurring after 5 years on ART. LTFU was defined as (1) patients not seen in the previous 12 months; and (2) patients not seen in the previous 6 months. Factors associated with LTFU were analysed using competing risk regression.

    RESULTS: Under the 12-month definition, the LTFU rate was 2.0 per 100 person-years (PY) [95% confidence interval (CI) 1.8-2.2 among 4889 patients included in the study. LTFU was associated with age > 50 years [sub-hazard ratio (SHR) 1.64; 95% CI 1.17-2.31] compared with 31-40 years, viral load ≥ 1000 copies/mL (SHR 1.86; 95% CI 1.16-2.97) compared with viral load < 1000 copies/mL, and hepatitis C coinfection (SHR 1.48; 95% CI 1.06-2.05). LTFU was less likely to occur in females, in individuals with higher CD4 counts, in those with self-reported adherence ≥ 95%, and in those living in high-income countries. The 6-month LTFU definition produced an incidence rate of 3.2 per 100 PY (95% CI 2.9-3.4 and had similar associations but with greater risks of LTFU for ART initiation in later years (2006-2009: SHR 2.38; 95% CI 1.93-2.94; and 2010-2011: SHR 4.26; 95% CI 3.17-5.73) compared with 2003-2005.

    CONCLUSIONS: The long-term LTFU rate in our cohort was low, with older age being associated with LTFU. The increased risk of LTFU with later years of ART initiation in the 6-month analysis, but not the 12-month analysis, implies that there was a possible move towards longer HIV clinic scheduling in Asia.

  4. Bijker R, Kumarasamy N, Kiertiburanakul S, Pujari S, Lam W, Chaiwarith R, et al.
    Antivir Ther, 2019;24(4):271-279.
    PMID: 30833516 DOI: 10.3851/IMP3298
    BACKGROUND: We aimed to project the 10-year future incidence of cardiovascular disease (CVD) and model several intervention scenarios based on a multi-site Asian HIV-positive cohort.

    METHODS: Analyses were based on patients recruited to the TREAT Asia HIV Observational Database (TAHOD), consisting of 21 sites in 12 countries. Patients on triple antiretroviral therapy (ART) were included if they were alive, without previous CVD, and had data on CVD risk factors. Annual new CVD events for 2019-2028 were estimated with the D:A:D equation, accounting for age- and sex-adjusted mortality. Modelled intervention scenarios were treatment of high total cholesterol, low high-density lipoprotein cholesterol (HDL) or high blood pressure, abacavir or lopinavir substitution, and smoking cessation.

    RESULTS: Of 3,703 included patients, 69% were male, median age was 46 (IQR 40-53) years and median time since ART initiation was 9.8 years (IQR 7.5-14.1). Cohort incidence rates of CVD were projected to increase from 730 per 100,000 person-years (pys) in 2019 to 1,432 per 100,000 pys in 2028. In the modelled intervention scenarios, most events can be avoided by smoking cessation, abacavir substitution, lopinavir substitution, decreasing total cholesterol, treating high blood pressure and increasing HDL.

    CONCLUSIONS: Our projections suggest a doubling of CVD incidence rates in Asian HIV-positive adults in our cohort. An increase in CVD can be expected in any ageing population, however, according to our models, this can be close to averted by interventions. Thus, there is an urgent need for risk screening and integration of HIV and CVD programmes to reduce the future CVD burden.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links