The differential cross section and charge asymmetry for inclusive [Formula: see text] production at [Formula: see text] are measured as a function of muon pseudorapidity. The data sample corresponds to an integrated luminosity of 18.8[Formula: see text] recorded with the CMS detector at the LHC. These results provide important constraints on the parton distribution functions of the proton in the range of the Bjorken scaling variable x from [Formula: see text] to [Formula: see text].
A search for new physics is performed using events with two isolated same-sign leptons, two or more jets, and missing transverse momentum. The results are based on a sample of proton-proton collisions at a center-of-mass energy of 13[Formula: see text] recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 2.3 [Formula: see text]. Multiple search regions are defined by classifying events in terms of missing transverse momentum, the scalar sum of jet transverse momenta, the transverse mass associated with a [Formula: see text] boson candidate, the number of jets, the number of [Formula: see text] quark jets, and the transverse momenta of the leptons in the event. The analysis is sensitive to a wide variety of possible signals beyond the standard model. No excess above the standard model background expectation is observed. Constraints are set on various supersymmetric models, with gluinos and bottom squarks excluded for masses up to 1300 and 680[Formula: see text], respectively, at the 95 % confidence level. Upper limits on the cross sections for the production of two top quark-antiquark pairs (119[Formula: see text]) and two same-sign top quarks (1.7[Formula: see text]) are also obtained. Selection efficiencies and model independent limits are provided to allow further interpretations of the results.
A measurement of the top quark pair production ([Formula: see text]) cross section in proton-proton collisions at the centre-of-mass energy of 8[Formula: see text] is presented using data collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 19.6[Formula: see text]. This analysis is performed in the [Formula: see text] decay channels with one isolated, high transverse momentum electron or muon and at least four jets, at least one of which is required to be identified as originating from hadronization of a b quark. The calibration of the jet energy scale and the efficiency of b jet identification are determined from data. The measured [Formula: see text] cross section is [Formula: see text]. This measurement is compared with an analysis of 7[Formula: see text] data, corresponding to an integrated luminosity of 5.0[Formula: see text], to determine the ratio of 8[Formula: see text] to 7[Formula: see text] cross sections, which is found to be [Formula: see text]. The measurements are in agreement with QCD predictions up to next-to-next-to-leading order.
Results are reported from a search for the pair production of top squarks, the supersymmetric partners of top quarks, in final states with jets and missing transverse momentum. The data sample used in this search was collected by the CMS detector and corresponds to an integrated luminosity of 18.9[Formula: see text] of proton-proton collisions at a centre-of-mass energy of 8[Formula: see text] produced by the LHC. The search features novel background suppression and prediction methods, including a dedicated top quark pair reconstruction algorithm. The data are found to be in agreement with the predicted backgrounds. Exclusion limits are set in simplified supersymmetry models with the top squark decaying to jets and an undetected neutralino, either through a top quark or through a bottom quark and chargino. Models with the top squark decaying via a top quark are excluded for top squark masses up to 755[Formula: see text] in the case of neutralino masses below 200[Formula: see text]. For decays via a chargino, top squark masses up to 620[Formula: see text] are excluded, depending on the masses of the chargino and neutralino.
The cross section of top quark-antiquark pair production in proton-proton collisions at [Formula: see text] is measured by the CMS experiment at the LHC, using data corresponding to an integrated luminosity of 2.2[Formula: see text]. The measurement is performed by analyzing events in which the final state includes one electron, one muon, and two or more jets, at least one of which is identified as originating from hadronization of a b quark. The measured cross section is [Formula: see text], in agreement with the expectation from the standard model.
The relative modification of the prompt ψ(2S) and J/ψ yields from pp to PbPb collisions, at the center-of-mass energy of 5.02 TeV per nucleon pair, is presented. The analysis is based on pp and PbPb data samples collected by the CMS experiment at the LHC in 2015, corresponding to integrated luminosities of 28.0 pb^{-1} and 464 μb^{-1}, respectively. The double ratio of measured yields of prompt charmonia reconstructed through their decays into muon pairs, (N_{ψ(2S)}/N_{J/ψ})_{PbPb}/(N_{ψ(2S)}/N_{J/ψ})_{pp}, is determined as a function of PbPb collision centrality and charmonium transverse momentum p_{T}, in two kinematic intervals: |y|<1.6 covering 6.5
A search for a massive resonance [Formula: see text]decaying into a W and a Higgs boson in the [Formula: see text] ([Formula: see text], [Formula: see text]) final state is presented. Results are based on data corresponding to an integrated luminosity of 19.7[Formula: see text] of proton-proton collisions at [Formula: see text] [Formula: see text], collected using the CMS detector at the LHC. For a high-mass ([Formula: see text]1[Formula: see text]) resonance, the two bottom quarks coming from the Higgs boson decay are reconstructed as a single jet, which can be tagged by placing requirements on its substructure and flavour. Exclusion limits at 95 % confidence level are set on the production cross section of a narrow resonance decaying into WH, as a function of its mass. In the context of a little Higgs model, a lower limit on the [Formula: see text] mass of 1.4[Formula: see text] is set. In a heavy vector triplet model that mimics the properties of composite Higgs models, a lower limit on the [Formula: see text] mass of 1.5[Formula: see text] is set. In the context of this model, the results are combined with related searches to obtain a lower limit on the [Formula: see text] mass of 1.8[Formula: see text], the most restrictive to date for decays to a pair of standard model bosons.
Jet multiplicity distributions in top quark pair ([Formula: see text]) events are measured in pp collisions at a centre-of-mass energy of 8 TeV with the CMS detector at the LHC using a data set corresponding to an integrated luminosity of 19.7[Formula: see text]. The measurement is performed in the dilepton decay channels ([Formula: see text], [Formula: see text], and [Formula: see text]). The absolute and normalized differential cross sections for [Formula: see text] production are measured as a function of the jet multiplicity in the event for different jet transverse momentum thresholds and the kinematic properties of the leading additional jets. The differential [Formula: see text] and [Formula: see text] cross sections are presented for the first time as a function of the kinematic properties of the leading additional [Formula: see text] jets. Furthermore, the fraction of events without additional jets above a threshold is measured as a function of the transverse momenta of the leading additional jets and the scalar sum of the transverse momenta of all additional jets. The data are compared and found to be consistent with predictions from several perturbative quantum chromodynamics event generators and a next-to-leading order calculation.
A measurement of the forward-backward asymmetry [Formula: see text] of oppositely charged lepton pairs ([Formula: see text] and [Formula: see text]) produced via [Formula: see text] boson exchange in pp collisions at [Formula: see text] [Formula: see text] is presented. The data sample corresponds to an integrated luminosity of 19.7[Formula: see text] collected with the CMS detector at the LHC. The measurement of [Formula: see text] is performed for dilepton masses between 40[Formula: see text] and 2[Formula: see text] and for dilepton rapidity up to 5. The [Formula: see text] measurements as a function of dilepton mass and rapidity are compared with the standard model predictions.
A search for new phenomena is performed in final states containing one or more jets and an imbalance in transverse momentum in pp collisions at a centre-of-mass energy of 13[Formula: see text]. The analysed data sample, recorded with the CMS detector at the CERN LHC, corresponds to an integrated luminosity of 2.3[Formula: see text]. Several kinematic variables are employed to suppress the dominant background, multijet production, as well as to discriminate between other standard model and new physics processes. The search provides sensitivity to a broad range of new-physics models that yield a stable weakly interacting massive particle. The number of observed candidate events is found to agree with the expected contributions from standard model processes, and the result is interpreted in the mass parameter space of fourteen simplified supersymmetric models that assume the pair production of gluinos or squarks and a range of decay modes. For models that assume gluino pair production, masses up to 1575 and 975[Formula: see text] are excluded for gluinos and neutralinos, respectively. For models involving the pair production of top squarks and compressed mass spectra, top squark masses up to 400[Formula: see text] are excluded.
The nuclear modification factor [Formula: see text] and the azimuthal anisotropy coefficient [Formula: see text] of prompt and nonprompt (i.e. those from decays of b hadrons) [Formula: see text] mesons, measured from PbPb and pp collisions at [Formula: see text] [Formula: see text] at the LHC, are reported. The results are presented in several event centrality intervals and several kinematic regions, for transverse momenta [Formula: see text] [Formula: see text] and rapidity [Formula: see text], extending down to [Formula: see text] [Formula: see text] in the [Formula: see text] range. The [Formula: see text] of prompt [Formula: see text] is found to be nonzero, but with no strong dependence on centrality, rapidity, or [Formula: see text] over the full kinematic range studied. The measured [Formula: see text] of nonprompt [Formula: see text] is consistent with zero. The [Formula: see text] of prompt [Formula: see text] exhibits a suppression that increases from peripheral to central collisions but does not vary strongly as a function of either y or [Formula: see text] in the fiducial range. The nonprompt [Formula: see text] [Formula: see text] shows a suppression which becomes stronger as rapidity or [Formula: see text] increases. The [Formula: see text] and [Formula: see text] of open and hidden charm, and of open charm and beauty, are compared.
The WZ production cross section is measured by the CMS experiment at the CERN LHC in proton-proton collision data samples corresponding to integrated luminosities of 4.9[Formula: see text] collected at [Formula: see text], and 19.6[Formula: see text] at [Formula: see text]. The measurements are performed using the fully-leptonic WZ decay modes with electrons and muons in the final state. The measured cross sections for [Formula: see text] are [Formula: see text] [Formula: see text] and [Formula: see text] [Formula: see text]. Differential cross sections with respect to the [Formula: see text] boson [Formula: see text], the leading jet [Formula: see text], and the number of jets are obtained using the [Formula: see text] data. The results are consistent with standard model predictions and constraints on anomalous triple gauge couplings are obtained.
A search for narrow resonances decaying to an electron and a muon is presented. The [Formula: see text] [Formula: see text] mass spectrum is also investigated for non-resonant contributions from the production of quantum black holes (QBHs). The analysis is performed using data corresponding to an integrated luminosity of 19.7[Formula: see text] collected in proton-proton collisions at a centre-of-mass energy of 8[Formula: see text] with the CMS detector at the LHC. With no evidence for physics beyond the standard model in the invariant mass spectrum of selected [Formula: see text] pairs, upper limits are set at 95 [Formula: see text] confidence level on the product of cross section and branching fraction for signals arising in theories with charged lepton flavour violation. In the search for narrow resonances, the resonant production of a [Formula: see text] sneutrino in R-parity violating supersymmetry is considered. The [Formula: see text] sneutrino is excluded for masses below 1.28[Formula: see text] for couplings [Formula: see text], and below 2.30[Formula: see text] for [Formula: see text] and [Formula: see text]. These are the most stringent limits to date from direct searches at high-energy colliders. In addition, the resonance searches are interpreted in terms of a model with heavy partners of the [Formula: see text] boson and the photon. In a framework of TeV-scale quantum gravity based on a renormalization of Newton's constant, the search for non-resonant contributions to the [Formula: see text] [Formula: see text] mass spectrum excludes QBH production below a threshold mass [Formula: see text] of 1.99[Formula: see text]. In models that invoke extra dimensions, the bounds range from 2.36[Formula: see text] for one extra dimension to 3.63[Formula: see text] for six extra dimensions. This is the first search for QBHs decaying into the [Formula: see text] [Formula: see text] final state.
This paper presents a measurement of the inclusive 3-jet production differential cross section at a proton-proton centre-of-mass energy of 7 TeV using data corresponding to an integrated luminosity of 5[Formula: see text]collected with the CMS detector. The analysis is based on the three jets with the highest transverse momenta. The cross section is measured as a function of the invariant mass of the three jets in a range of 445-3270 GeV and in two bins of the maximum rapidity of the jets up to a value of 2. A comparison between the measurement and the prediction from perturbative QCD at next-to-leading order is performed. Within uncertainties, data and theory are in agreement. The sensitivity of the observable to the strong coupling constant [Formula: see text] is studied. A fit to all data points with 3-jet masses larger than 664 GeV gives a value of the strong coupling constant of [Formula: see text].
A search has been performed for long-lived particles that could have come to rest within the CMS detector, using the time intervals between LHC beam crossings. The existence of such particles could be deduced from observation of their decays via energy deposits in the CMS calorimeter appearing at times that are well separated from any proton-proton collisions. Using a data set corresponding to an integrated luminosity of 18.6[Formula: see text] of 8[Formula: see text] proton-proton collisions, and a search interval corresponding to 281 h of trigger livetime, 10 events are observed, with a background prediction of [Formula: see text] events. Limits are presented at 95 % confidence level on gluino and top squark production, for over 13 orders of magnitude in the mean proper lifetime of the stopped particle. Assuming a cloud model of R-hadron interactions, a gluino with mass [Formula: see text]1000[Formula: see text] and a top squark with mass [Formula: see text]525[Formula: see text] are excluded, for lifetimes between 1 [Formula: see text]s and 1000[Formula: see text]. These results are the most stringent constraints on stopped particles to date.
Properties of the Higgs boson with mass near 125[Formula: see text] are measured in proton-proton collisions with the CMS experiment at the LHC. Comprehensive sets of production and decay measurements are combined. The decay channels include [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] pairs. The data samples were collected in 2011 and 2012 and correspond to integrated luminosities of up to 5.1[Formula: see text] at 7[Formula: see text] and up to 19.7[Formula: see text] at 8[Formula: see text]. From the high-resolution [Formula: see text] and [Formula: see text] channels, the mass of the Higgs boson is determined to be [Formula: see text]. For this mass value, the event yields obtained in the different analyses tagging specific decay channels and production mechanisms are consistent with those expected for the standard model Higgs boson. The combined best-fit signal relative to the standard model expectation is [Formula: see text] at the measured mass. The couplings of the Higgs boson are probed for deviations in magnitude from the standard model predictions in multiple ways, including searches for invisible and undetected decays. No significant deviations are found.
Results are presented from a search for particle dark matter (DM), extra dimensions, and unparticles using events containing a jet and an imbalance in transverse momentum. The data were collected by the CMS detector in proton-proton collisions at the LHC and correspond to an integrated luminosity of 19.7[Formula: see text]at a centre-of-mass energy of 8[Formula: see text]. The number of observed events is found to be consistent with the standard model prediction. Limits are placed on the DM-nucleon scattering cross section as a function of the DM particle mass for spin-dependent and spin-independent interactions. Limits are also placed on the scale parameter [Formula: see text] in the Arkani-Hamed, Dimopoulos, and Dvali (ADD) model of large extra dimensions, and on the unparticle model parameter [Formula: see text]. The constraints on ADD models and unparticles are the most stringent limits in this channel and those on the DM-nucleon scattering cross section are an improvement over previous collider results.
A search for a standard model Higgs boson produced in association with a top-quark pair and decaying to bottom quarks is presented. Events with hadronic jets and one or two oppositely charged leptons are selected from a data sample corresponding to an integrated luminosity of 19.5[Formula: see text] collected by the CMS experiment at the LHC in [Formula: see text] collisions at a centre-of-mass energy of 8[Formula: see text]. In order to separate the signal from the larger [Formula: see text] + jets background, this analysis uses a matrix element method that assigns a probability density value to each reconstructed event under signal or background hypotheses. The ratio between the two values is used in a maximum likelihood fit to extract the signal yield. The results are presented in terms of the measured signal strength modifier, [Formula: see text], relative to the standard model prediction for a Higgs boson mass of 125[Formula: see text]. The observed (expected) exclusion limit at a 95 % confidence level is [Formula: see text] (3.3), corresponding to a best fit value [Formula: see text].
Results are presented from a search for new decaying massive particles whose presence is inferred from an imbalance in transverse momentum and which are produced in association with a single top quark that decays into a bottom quark and two light quarks. The measurement is performed using 19.7 fb^{-1} of data from proton-proton collisions at a center-of-mass energy of 8 TeV, collected with the CMS detector at the CERN LHC. No deviations from the standard model predictions are observed and lower limits are set on the masses of new invisible bosons. In particular, scalar and vector particles, with masses below 330 and 650 GeV, respectively, are excluded at 95% confidence level, thereby substantially extending a previous limit published by the CDF Collaboration.
The production of jets in association with Z bosons, reconstructed via the μ^{+}μ^{-} and e^{+}e^{-} decay channels, is studied in pp and, for the first time, in Pb-Pb collisions. Both data samples were collected by the CMS experiment at the LHC, at a nucleon-nucleon center-of-mass energy of 5.02 TeV. The Pb-Pb collisions were analyzed in the 0%-30% centrality range. The back-to-back azimuthal alignment was studied in both pp and Pb-Pb collisions for Z bosons with transverse momentum p_{T}^{Z}>60 GeV/c and a recoiling jet with p_{T}^{jet}>30 GeV/c. The p_{T} imbalance x_{jZ}=p_{T}^{jet}/p_{T}^{Z}, as well as the average number of jet partners per Z, R_{jZ}, was studied in intervals of p_{T}^{Z}. The R_{jZ} is found to be smaller in Pb-Pb than in pp collisions, which suggests that in Pb-Pb collisions a larger fraction of partons associated with the Z bosons fall below the 30 GeV/c p_{T}^{jet} threshold because they lose energy.