Displaying publications 21 - 23 of 23 in total

Abstract:
Sort:
  1. Karimian H, Fadaeinasab M, Moghadamtousi SZ, Hajrezaei M, Zahedifard M, Razavi M, et al.
    Cell Physiol Biochem, 2015;36(3):988-1003.
    PMID: 26087920 DOI: 10.1159/000430273
    BACKGROUND: Tanacetum polycephalum L. Schultz-Bip is a member of the Asteraceae family. This study evaluated the chemopreventive effect of a T. polycephalum hexane extract (TPHE) using in in vivo and in vitro models.

    METHODS AND RESULTS: Five groups of rats: normal control, cancer control, TPHE low dose, TPHE high dose and positive control (tamoxifen) were used for the in vivo study. Histopathological examination showed that TPHE significantly suppressed the carcinogenic effect of LA7 tumour cells. The tumour sections from TPHE-treated rats demonstrated significantly reduced expression of Ki67 and PCNA compared to the cancer control group. Using a bioassay-guided approach, the cytotoxic compound of TPHE was identified as a tricyclic sesquiterpene lactone, namely, 8β- hydroxyl- 4β, 15- dihydrozaluzanin C (HDZC). Signs of early and late apoptosis were observed in MCF7 cells treated with HDZC and were attributed to the mitochondrial intrinsic pathway based on the up-regulation of Bax and the down-regulation of Bcl-2. HDZC induced cell cycle arrest in MCF7 cells and increased the expression of p21 and p27 at the mRNA and protein levels.

    CONCLUSION: This results of this study substantiate the anticancer effect of TPHE and highlight the involvement of HDZC as one of the contributing compounds that act by initiating mitochondrial-mediated apoptosis.

  2. Khanabdali R, Saadat A, Fazilah M, Bazli KF, Qazi RE, Khalid RS, et al.
    Drug Des Devel Ther, 2016;10:81-91.
    PMID: 26766903 DOI: 10.2147/DDDT.S89658
    Small molecules, growth factors, and cytokines have been used to induce differentiation of stem cells into different lineages. Similarly, demethylating agents can trigger differentiation in adult stem cells. Here, we investigated the in vitro differentiation of rat bone marrow mesenchymal stem cells (MSCs) into cardiomyocytes by a demethylating agent, zebularine, as well as neuronal-like cells by β-mercaptoethanol in a growth factor or cytokines-free media. Isolated bone marrow-derived MSCs cultured in Dulbecco's Modified Eagle's Medium exhibited a fibroblast-like morphology. These cells expressed positive markers for CD29, CD44, and CD117 and were negative for CD34 and CD45. After treatment with 1 μM zebularine for 24 hours, the MSCs formed myotube-like structures after 10 days in culture. Expression of cardiac-specific genes showed that treated MSCs expressed significantly higher levels of cardiac troponin-T, Nkx2.5, and GATA-4 compared with untreated cells. Immunocytochemical analysis showed that differentiated cells also expressed cardiac proteins, GATA-4, Nkx 2.5, and cardiac troponin-T. For neuronal differentiation, MSCs were treated with 1 and 10 mM β-mercaptoethanol overnight for 3 hours in complete and serum-free Dulbecco's Modified Eagle's Medium, respectively. Following overnight treatment, neuron-like cells with axonal and dendritic-like projections originating from the cell body toward the neighboring cells were observed in the culture. The mRNA expression of neuronal-specific markers, Map2, Nefl, Tau, and Nestin, was significantly higher, indicating that the treated cells differentiated into neuronal-like cells. Immunostaining showed that differentiated cells were positive for the neuronal markers Flk, Nef, Nestin, and β-tubulin.
  3. Hajrezaie M, Hassandarvish P, Moghadamtousi SZ, Gwaram NS, Golbabapour S, Najihussien A, et al.
    PLoS One, 2014;9(3):e91246.
    PMID: 24618844 DOI: 10.1371/journal.pone.0091246
    Based on the potential of Schiff base compounds to act as sources for the development of cancer chemotherapeutic agents, this in vivo study was performed to investigate the inhibitory properties of the synthetic Schiff base compound Cu(BrHAP)2 on colonic aberrant crypt foci (ACF).
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links