METHODS: A cohort of 4,240 Sepsis-3 patients was analyzed, with 783 experiencing 30-day mortality and 3,457 surviving. Fifteen biomarkers were selected using feature ranking methods, including Extreme Gradient Boosting (XGBoost), Random Forest, and Extra Tree, and the Logistic Regression (LR) model was used to assess their individual predictability with a fivefold cross-validation approach for the validation of the prediction. The dataset was balanced using the SMOTE-TOMEK LINK technique, and a stacking-based meta-classifier was used for 30-day mortality prediction. The SHapley Additive explanations analysis was performed to explain the model's prediction.
RESULTS: Using the LR classifier, the model achieved an area under the curve or AUC score of 0.99. A nomogram provided clinical insights into the biomarkers' significance. The stacked meta-learner, LR classifier exhibited the best performance with 95.52% accuracy, 95.79% precision, 95.52% recall, 93.65% specificity, and a 95.60% F1-score.
CONCLUSIONS: In conjunction with the nomogram, the proposed stacking classifier model effectively predicted 30-day mortality in Sepsis patients. This approach holds promise for early intervention and improved outcomes in treating Sepsis cases.
METHOD: For designing and modeling the DSPN severity grading systems for MNSI, 19 years of data from Epidemiology of Diabetes Interventions and Complications (EDIC) clinical trials were used. Different Machine learning-based feature ranking techniques were investigated to identify the important MNSI features associated with DSPN diagnosis. A multivariable logistic regression-based nomogram was generated and validated for DSPN severity grading using the best performing top-ranked MNSI features.
RESULTS: Top-10 ranked features from MNSI features: Appearance of Feet (R), Ankle Reflexes (R), Vibration perception (L), Vibration perception (R), Appearance of Feet (L), 10-gm filament (L), Ankle Reflexes (L), 10-gm filament (R), Bed Cover Touch, and Ulceration (R) were identified as important features for identifying DSPN by Multi-Tree Extreme Gradient Boost model. The nomogram-based prediction model exhibited an accuracy of 97.95% and 98.84% for the EDIC test set and an independent test set, respectively. A DSPN severity score technique was generated for MNSI from the DSPN severity prediction model. DSPN patients were stratified into four severity levels: absent, mild, moderate, and severe using the cut-off values of 17.6, 19.1, 20.5 for the DSPN probability less than 50%, 75%-90%, and above 90%, respectively.
CONCLUSIONS: The findings of this work provide a machine learning-based MNSI severity grading system which has the potential to be used as a secondary decision support system by health professionals in clinical applications and large clinical trials to identify high-risk DSPN patients.