Displaying publications 21 - 28 of 28 in total

Abstract:
Sort:
  1. Teh KY, Loh SH, Aziz A, Takahashi K, Effendy AWM, Cha TS
    Sci Rep, 2021 01 11;11(1):438.
    PMID: 33432049 DOI: 10.1038/s41598-020-79950-3
    Mangrove-dwelling microalgae are well adapted to frequent encounters of salinity fluctuations across their various growth phases but are lesser studied. The current study explored the adaptive changes (in terms of biomass, oil content and fatty acid composition) of mangrove-isolated C. vulgaris UMT-M1 cultured under different salinity levels (5, 10, 15, 20, 30 ppt). The highest total oil content was recorded in cultures at 15 ppt salinity (63.5% of dry weight) with uncompromised biomass productivity, thus highlighting the 'trigger-threshold' for oil accumulation in C. vulgaris UMT-M1. Subsequently, C. vulgaris UMT-M1 was further assessed across different growth phases under 15 ppt. The various short, medium and long-chain fatty acids (particularly C20:0), coupled with a high level of C18:3n3 PUFA reported at early exponential phase represents their physiological importance during rapid cell growth. Accumulation of C18:1 and C18:2 at stationary growth phase across all salinities was seen as cells accumulating substrate for C18:3n3 should the cells anticipate a move from stationary phase into new growth phase. This study sheds some light on the possibility of 'triggered' oil accumulation with uninterrupted growth and the participation of various fatty acid types upon salinity mitigation in a mangrove-dwelling microalgae.
  2. Teo ZL, Sun CZ, Chong CCY, Tham YC, Takahashi K, Majithia S, et al.
    Ophthalmol Retina, 2022 Nov;6(11):1080-1088.
    PMID: 35580772 DOI: 10.1016/j.oret.2022.05.010
    OBJECTIVE: To describe the normative quantitative parameters of the macular retinal vasculature, as well as their systemic and ocular associations using OCT angiography (OCTA).

    DESIGN: Population-based, cross-sectional study.

    SUBJECTS: Adults aged > 50 years were recruited from the third examination of the population-based Singapore Malay Eye Study.

    METHODS: All participants underwent a standardized comprehensive examination and spectral-domain OCTA (Optovue) of the macula. OCT angiography scans that revealed pre-existing retinal disease, revealed macular pathology, and had poor quality were excluded.

    MAIN OUTCOME MEASURES: The normative quantitative vessel densities of the superficial layer, deep layer, and foveal avascular zone (FAZ) were evaluated. Ocular and systemic associations with macular retinal vasculature parameters were also evaluated in a multivariable analysis using linear regression models with generalized estimating equation models.

    RESULTS: We included 1184 scans (1184 eyes) of 749 participants. The mean macular superficial vessel density (SVD) and deep vessel density (DVD) were 45.1 ± 4.2% (95% confidence interval [CI], 37.8%-51.4%) and 44.4 ± 5.2% (95% CI, 36.9%-53.2%), respectively. The mean SVD and DVD were highest in the superior quadrant (48.7 ± 5.9%) and nasal quadrant (52.7 ± 4.6%), respectively. The mean FAZ area and perimeter were 0.32 ± 0.11 mm2 (95% CI, 0.17-0.51 mm) and 2.14 ± 0.38 mm (95% CI, 1.54-2.75 mm), respectively. In the multivariable regression analysis, female sex was associated with higher SVD (β = 1.25, P ≤ 0.001) and DVD (β = 0.75, P = 0.021). Older age (β = -0.67, P < 0.001) was associated with lower SVD, whereas longer axial length (β = -0.42, P = 0.003) was associated with lower DVD. Female sex, shorter axial length, and worse best-corrected distance visual acuity were associated with a larger FAZ area. No association of a range of systemic parameters with vessel density was found.

    CONCLUSIONS: This study provided normative macular vasculature parameters in an adult Asian population, which may serve as reference values for quantitative interpretation of OCTA data in normal and disease states.

  3. Thoha H, Muawanah, Bayu Intan MD, Rachman A, Sianturi OR, Sidabutar T, et al.
    Front Microbiol, 2019;10:306.
    PMID: 30846977 DOI: 10.3389/fmicb.2019.00306
    Margalefidinium polykrikoides, an unarmored dinoflagellate, was suspected to be the causative agent of the harmful algal blooms - associated with massive fish mortalities - that have occurred continually in Lampung Bay, Indonesia, since the first bloom event in October 2012. In this study, after examination of the morphology of putative M. polykrikoides-like cysts sampled in bottom sediments, cyst bed distribution of this harmful species was explored in the inner bay. Sediment samples showed that resting cysts, including several morphotypes previously reported as M. polykrikoides, were most abundant on the northern coast of Lampung Bay, ranging from 20.6 to 645.6 cysts g-1 dry sediment. Molecular phylogeny inferred from LSU rDNA revealed that the so-called Mediterranean ribotype was detected in the sediment while M. polykrikoides motile cells, four-cell chain forming in bloom conditions, belonged to the American-Malaysian ribotype. Moreover, hyaline cysts, exclusively in the form of four-cell chains, were also recorded. Overall, these results unequivocally show that the species M. polykrikoides is abundantly present, in the form of vegetative cells, hyaline and resting cysts in an Indonesian area.
  4. Vishwakarma R, Rosmi MS, Takahashi K, Wakamatsu Y, Yaakob Y, Araby MI, et al.
    Sci Rep, 2017 03 02;7:43756.
    PMID: 28251997 DOI: 10.1038/srep43756
    Low-temperature growth, as well as the transfer free growth on substrates, is the major concern of graphene research for its practical applications. Here we propose a simple method to achieve the transfer free graphene growth on SiO2 covered Si (SiO2/Si) substrate at 250 °C based on a solid-liquid-solid reaction. The key to this approach is the catalyst metal, which is not popular for graphene growth by chemical vapor deposition. A catalyst metal film of 500 nm thick was deposited onto an amorphous C (50 nm thick) coated SiO2/Si substrate. The sample was then annealed at 250 °C under vacuum condition. Raman spectra measured after the removal of the catalyst by chemical etching showed intense G and 2D peaks together with a small D and intense SiO2 related peaks, confirming the transfer free growth of multilayer graphene on SiO2/Si. The domain size of the graphene confirmed by optical microscope and atomic force microscope was about 5 μm in an average. Thus, this approach will open up a new route for transfer free graphene growth at low temperatures.
  5. Wan Afifudeen CL, Loh SH, Aziz A, Takahashi K, Effendy AWM, Cha TS
    Sci Rep, 2021 01 11;11(1):381.
    PMID: 33431982 DOI: 10.1038/s41598-020-79711-2
    Bioprospecting for biodiesel potential in microalgae primarily involves a few model species of microalgae and rarely on non-model microalgae species. Therefore, the present study determined changes in physiology, oil accumulation, fatty acid composition and biodiesel properties of a non-model microalga Messastrum gracile SE-MC4 in response to 12 continuous days of nitrate-starve (NS) and nitrate-replete (NR) conditions respectively. Under NS, the highest oil content (57.9%) was achieved despite reductions in chlorophyll content, biomass productivity and lipid productivity. However, under both NS and NR, palmitic acid and oleic acid remained as dominant fatty acids thus suggesting high potential of M. gracile for biodiesel feedstock consideration. Biodiesel properties analysis returned high values of cetane number (CN 61.9-64.4) and degree of unsaturation (DU 45.3-57.4) in both treatments. The current findings show the possibility of a non-model microalga to inherit superior ability over model species in oil accumulation for biodiesel development.
  6. Wan Afifudeen CL, Aziz A, Wong LL, Takahashi K, Toda T, Abd Wahid ME, et al.
    Phytochemistry, 2021 Dec;192:112936.
    PMID: 34509143 DOI: 10.1016/j.phytochem.2021.112936
    The non-model microalga Messastrum gracile SE-MC4 is a potential species for biodiesel production. However, low biomass productivity hinders it from passing the life cycle assessment for biodiesel production. Therefore, the current study was aimed at uncovering the differences in the transcriptome profiles of the microalgae at early exponential and early stationary growth phases and dissecting the roles of specific differential expressed genes (DEGs) involved in cell division during M. gracile cultivation. The transcriptome analysis revealed that the photosynthetic integral membrane protein genes such as photosynthetic antenna protein were severely down-regulated during the stationary growth phase. In addition, the signaling pathways involving transcription, glyoxylate metabolism and carbon metabolism were also down-regulated during stationary growth phase. Current findings suggested that the coordination between photosynthetic integral membrane protein genes, signaling through transcription and carbon metabolism classified as prominent strategies during exponential growth stage. These findings can be applied in genetic improvement of M. gracile for biodiesel application.
  7. Watabe M, Arjunan SNV, Chew WX, Kaizu K, Takahashi K
    Phys Rev E, 2019 Jul;100(1-1):010402.
    PMID: 31499827 DOI: 10.1103/PhysRevE.100.010402
    We propose a computational method to quantitatively evaluate the systematic uncertainties that arise from undetectable sources in biological measurements using live-cell imaging techniques. We then demonstrate this method in measuring the biological cooperativity of molecular binding networks, in particular, ligand molecules binding to cell-surface receptor proteins. Our results show how the nonstatistical uncertainties lead to invalid identifications of the measured cooperativity. Through this computational scheme, the biological interpretation can be more objectively evaluated and understood under a specific experimental configuration of interest.
  8. Watabe M, Arjunan SNV, Chew WX, Kaizu K, Takahashi K
    Phys Rev E, 2019 Dec;100(6-1):062407.
    PMID: 31962468 DOI: 10.1103/PhysRevE.100.062407
    While cooperativity in ligand-induced receptor dimerization has been linked with receptor-receptor couplings via minimal representations of physical observables, effects arising from higher-order oligomer, e.g., trimer and tetramer, formations of unobserved receptors have received less attention. Here we propose a dimerization model of ligand-induced receptors in multivalent form representing physical observables under basis vectors of various aggregated receptor states. Our simulations of multivalent models not only reject Wofsy-Goldstein parameter conditions for cooperativity, but show that higher-order oligomer formations can shift cooperativity from positive to negative.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links