Displaying publications 21 - 40 of 40 in total

Abstract:
Sort:
  1. Akinsola RO, Adewoyin M, Lee CW, Sim EU, Narayanan K
    Anal Biochem, 2021 12 01;634:114432.
    PMID: 34695391 DOI: 10.1016/j.ab.2021.114432
    Quantification of bacterial invasion into eukaryotic cells is a prerequisite to unfold the molecular mechanisms of this vector's function to obtain insights for improving its efficiency. Invasion is traditionally quantified by antibiotic protection assays that require dilution plating and counting of colony-forming units rescued from infected cells. However, to differentiate between attached and internalized bacteria vector, this assay requires supplementation by a time-consuming and tedious immunofluorescence staining, making it laborious and reduces its reliability and reproducibility. Here we describe a new red fluorescent protein (RFP)-based high-throughput and inexpensive method for tracking bacterial adherence and internalization through flow cytometry to provide a convenient and real-time quantification of bacterial invasiveness in a heterogeneous population of cells. We invaded MCF-7, A549, and HEK-293 cells with the E. coli vector and measured RFP using imaging flow cytometry. We found high cellular infection of up to 70.47% in MCF-7 compared to 27.4% and 26.2% in A549 and HEK-293 cells, respectively. The quantitative evaluation of internalized E. coli is rapid and cell-dependent, and it distinctively differentiates between attached and cytosolic bacteria while showing the degree of cellular invasiveness. This imaging flow cytometry approach can be applied broadly to study host-bacteria interaction.
  2. Wong YC, Osahor A, Al-Ajli FOM, Narayanan K
    Anal Biochem, 2021 10 01;630:114324.
    PMID: 34363787 DOI: 10.1016/j.ab.2021.114324
    The effect of DNA topology on transfection efficiency of mammalian cells has been widely tested on plasmids smaller than 10 kb, but little is known for larger DNA vectors carrying intact genomic DNA containing introns, exons, and regulatory regions. Here, we demonstrate that circular BACs transfect more efficiently than covalently closed linear BACs. We found up to 3.1- and 8.9- fold higher eGFP expression from circular 11 kb and 100 kb BACs, respectively, compared to linear BACs. These findings provide insights for improved vector development for gene delivery and expression studies of large intact transgenes in mammalian cells.
  3. Osahor A, Deekonda K, Lee CW, Sim EU, Radu A, Narayanan K
    Anal Biochem, 2017 10 01;534:46-48.
    PMID: 28693990 DOI: 10.1016/j.ab.2017.07.008
    Sample preparation for scanning electron microscope analysis involves reagents and equipment that are expensive and often hazardous. Here we demonstrate a circumvention of Osmium tetroxide and critical point drying, greatly reducing the duration, complexity and cost of the process. We captured early stage interactions of invasive-bacteria and HeLa cells during the process of bacteria-mediated gene delivery and illustrate sufficient clarity can be obtained using this procedure to preserve and clearly visualize relevant cellular structures. This protocol is significantly cheaper and easier to adapt compared to conventional methods, and will allow routine preparation/viewing of eukaryotic or bacterial samples for basic morphological studies.
  4. Zakaria N, Ramli MZ, Ramasamy K, Meng LS, Yean CY, Banga Singh KK, et al.
    Anal Biochem, 2018 08 15;555:12-21.
    PMID: 29879415 DOI: 10.1016/j.ab.2018.05.031
    A miniaturized biosensing platform, based on monoclonal amyloid-beta antibodies (mAβab) that were immobilized on a disc-shaped platinum/iridium (Pt/Ir) microelectrode surface coupled with an impedimetric signal transducer, was developed for the label-free and sensitive detection of amyloid-beta peptide fragment 1-40 (Aβ40); a reliable biomarker for early diagnosis of Alzheimer's disease (AD). A Pt/Ir microelectrode was electropolymerized with poly (ortho-phenylenediamine), a conducting free amine-containing aromatic polymer; followed by crosslinking with glutaraldehyde for subsequent coupling of mAβab on the microelectrode surface. This modification strategy efficiently improved the impedimetric detection performance of Aβ40 in terms of charge transfer resistance (∼400-fold difference) and normalized impedance magnitude percentage change (∼40% increase) compared with a passive adsorption-based immobilization method. The sensitivity of the micro-immunosensing assay was found to be 1056 kΩ/(pg/mL)/cm2 and the limit of detection was found to be 4.81 pg/mL with a dynamic range of 1-104 pg/mL (R2 = 0.9932). The overall precision of the assay, as measured by relative standard deviation, ranged from 0.84 to 5.15%, demonstrating its reliability and accuracy; while in respect to assay durability and stability, the immobilized mAβab were able to maintain 80% of their binding activity to Aβ40 after incubation for 48 h at ambient temperature (25 °C). To validate the practical applicability, the assay was tested using brain tissue lysates prepared from AD-induced rats. Results indicate that the proposed impedimetric micro-immunosensing platform is highly versatile and adaptable for the quantitative detection of other disease-related biomarkers.
  5. Loh Q, Omar N, Glökler J, Lim TS
    Anal Biochem, 2014 Oct 15;463:67-9.
    PMID: 24972268 DOI: 10.1016/j.ab.2014.06.012
    Immunoassays are often coupled to peroxidase activity for antigen detection. Sensitivity and speed of detection has been increased by the advent of hybrid methods such as immuno-PCR (polymerase chain reaction). However, a more simplified immunoassay that retains both colorimetric peroxidase detection and effective DNA amplification in a setting closer to field application conditions has been nonexistent. Here we describe a method that successfully combines a competitive immunoassay with the new isothermal quadruplex-primed amplification (QPA) to generate excess quadruplex reporter molecules with intrinsic peroxidase DNAzyme activity.
  6. Loh Q, Bahara NH, Choong YS, Lim TS
    Anal Biochem, 2012 Dec 1;431(1):54-6.
    PMID: 22975202 DOI: 10.1016/j.ab.2012.08.025
    The quality of a nucleotide-based library such as a synthetic antibody library is highly dependent on the diversity available. Diversity can be generated using degenerate oligonucleotides introduced during gene assembly. Conventional approaches to gene assembly are not efficient for oligonucleotides with long stretches of degeneracy. We propose an efficient alternative for simultaneous introduction of three randomized regions in a synthetic antibody gene via temperature cascading. The strategy takes advantage of DNA reannealing kinetics. The strategy can be adopted for generating diversity of gene inserts during the construction of nucleotide-based libraries.
  7. Loh Q, Leong SW, Tye GJ, Choong YS, Lim TS
    Anal Biochem, 2015 May 15;477:56-61.
    PMID: 25769419 DOI: 10.1016/j.ab.2015.02.026
    The low presentation efficiency of Fab (fragment antigen binding) fragments during phage display is largely due to the complexity of disulphide bond formation. This can result in the presentation of Fab fragments devoid of a light chain during phage display. Here we propose the use of a coplasmid system encoding several molecular chaperones (DsbA, DsbC, FkpA, and SurA) to improve Fab packaging. A comparison was done using the Fab fragment from IgG and IgD. We found that the use of the coplasmid during phage packaging was able to improve the presentation efficiency of the Fab fragment on phage surfaces. A modified version of panning using the coplasmid system was evaluated and was successful at enriching Fab binders. Therefore, the coplasmid system would be an attractive alternative for improved Fab presentation for phage display.
  8. Lee W, Syed A A, Leow CY, Tan SC, Leow CH
    Anal Biochem, 2018 08 15;555:81-93.
    PMID: 29775561 DOI: 10.1016/j.ab.2018.05.009
    Anti-salbutamol antibodies remain as important tools for the detection of salbutamol abuse in athletic doping. This study evaluated the feasibility and efficiency of the chicken (Gallus gallus domesticus) as an immunization host to generate anti-salbutamol scFv antibodies by phage display. A phage display antibody library was constructed from a single chicken immunized against salbutamol-KLH conjugate. After a stringent biopanning strategy, a novel scFv clone which was inhibited by free salbutamol recorded the highest affinity. This scFv was expressed as soluble and functional protein in Escherichia coli T7 SHuffle Express B (DE3) strain. Cross-reactivity studies of the scFv towards other relevant β2-agonists revealed that the scFv cross-reacted significantly towards clenbuterol. The determined IC50 of the scFv towards the two β2-agonists were; IC50 salbutamol = ∼0.310 μg/ml, IC50 clenbuterol = ∼0.076 μg/ml. The generated scFv demonstrated poor stability based on accelerated stability studies. The scFv was used to develop an competitive indirect ELISA (LOD = 0.125 μg/ml) for detection of parent salbutamol in spiked human urine (n = 18) with ∼83.4% reliability at the cut-off of 1 μg/ml currently implemented by WADA and may be of potential use in human doping urinalysis.
  9. Appaturi JN, Pulingam T, Thong KL, Muniandy S, Ahmad N, Leo BF
    Anal Biochem, 2020 01 15;589:113489.
    PMID: 31655050 DOI: 10.1016/j.ab.2019.113489
    Rapid detection of foodborne pathogens is crucial as ingestion of contaminated food products may endanger human health. Thus, the objective of this study was to develop a biosensor using reduced graphene oxide-carbon nanotubes (rGO-CNT) nanocomposite via the hydrothermal method for accurate and rapid label-free electrochemical detection of pathogenic bacteria such as Salmonella enterica. The rGO-CNT nanocomposite was characterized using Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction and transmission electron microscopy. The nanocomposite was dropped cast on the glassy carbon electrode and further modified with amino-modified DNA aptamer. The resultant ssDNA/rGO-CNT/GCE aptasensor was then used to detect bacteria by using differential pulse voltammetry (DPV) technique. Synergistic effects of aptasensor was evident through the combination of enhanced electrical properties and facile chemical functionality of both rGO and CNT for the stable interface. Under optimal experimental conditions, the aptasensor could detect S. Typhimurium in a wide linear dynamic range from 101 until 108 cfu mL-1 with a 101 cfu mL-1 of the limit of detection. This aptasensor also showed good sensitivity, selectivity and specificity for the detection of microorganisms. Furthermore, we have successfully applied the aptasensor for S. Typhimurium detection in real food samples.
  10. Chua EW, Miller AL, Kennedy MA
    Anal Biochem, 2015 May 15;477:115-7.
    PMID: 25766577 DOI: 10.1016/j.ab.2015.02.023
    We compared four brands of microtubes with respect to their suitability for long-range polymerase chain reactions (PCRs). One of the four brands was found to have an inhibitory effect, decreasing PCR yields. The effect was universal across different PCR or enzyme systems. Increased ultraviolet absorbance suggests leaching of unknown chemical species into PCR mixtures. However, this could not be confirmed by high-performance liquid chromatography-mass spectrometry analysis. Nevertheless, our article demonstrates a clear impact of the choice of microtubes on long-range PCR success. Due consideration should be given to the PCR microtubes when determining optimal reaction conditions for long-range PCR.
  11. Azmi NE, Ahmad M, Abdullah J, Sidek H, Heng LY, Karuppiah N
    Anal Biochem, 2009 May 1;388(1):28-32.
    PMID: 19454217 DOI: 10.1016/j.ab.2009.02.005
    An optical biosensor based on glutamate dehydrogenase (GLDH) immobilized in a chitosan film for the determination of ammonium in water samples is described. The biosensor film was deposited on a glass slide via a spin-coating method. The ammonium was measured based on beta-nicotinamide adenine dinucleotide (NADH) oxidation in the presence of alpha-ketoglutaric acid at a wavelength of 340 nm. The biosensor showed optimum activity at pH 8. The optimum chitosan concentrations and enzyme loading were found to be at 2% (w/v) and 0.08 mg, respectively. Optimum concentrations of NADH and alpha-ketoglutaric acid both were obtained at 0.15 mM. A linear response of the biosensor was obtained in the ammonium concentration range of 0.005 to 0.5 mM with a detection limit of 0.005 mM. The reproducibility of the biosensor was good, with an observed relative standard deviation of 5.9% (n=8). The biosensor was found to be stable for at least 1 month when stored dry at 4 degrees C.
  12. Rasouli E, Shahnavaz Z, Basirun WJ, Rezayi M, Avan A, Ghayour-Mobarhan M, et al.
    Anal Biochem, 2018 09 01;556:136-144.
    PMID: 29981317 DOI: 10.1016/j.ab.2018.07.002
    Human papillomavirus (HPV) is one of the most common sexually transmitted disease, transmitted through intimate skin contact or mucosal membrane. The HPV virus consists of a double-stranded circular DNA and the role of HPV virus in cervical cancer has been studied extensively. Thus it is critical to develop rapid identification method for early detection of the virus. A portable biosensing device could give rapid and reliable results for the identification and quantitative determination of the virus. The fabrication of electrochemical biosensors is one of the current techniques utilized to achieve this aim. In such electrochemical biosensors, a single-strand DNA is immobilized onto an electrically conducting surface and the changes in electrical parameters due to the hybridization on the electrode surface are measured. This review covers the recent developments in electrochemical DNA biosensors for the detection of HPV virus. Due to the several advantages of electrochemical DNA biosensors, their applications have witnessed an increased interest and research focus nowadays.
  13. Nawaz N, Abu Bakar NK, Muhammad Ekramul Mahmud HN, Jamaludin NS
    Anal Biochem, 2021 10 01;630:114328.
    PMID: 34363786 DOI: 10.1016/j.ab.2021.114328
    In multiple biological processes, molecular recognition performs an integral role in detecting bio analytes. Molecular imprinted polymers (MIPs) are tailored sensing materials that can biomimic the biologic ligands and can detect specific target molecules selectively and sensitively. The formulation of molecularly imprinted polymers is followed by the formulation of a control termed as non-imprinted polymer (NIP), which, in the absence of a template, is commonly formulated to evaluate whether distinctive imprints have been produced for the template. Given the difficulties confronting bioanalytical researchers, it is inevitable that this strategy would come out as a central route of multidisciplinary studies to create extremely promising stable artificial receptors as a replacement or accelerate biological matrices. The ease of synthesis, low cost, capability to 'tailor' recognition element for analyte molecules, and stability under harsh environments make MIPs promising candidates as a recognition tool for biosensing. Compared to biological systems, molecular imprinting techniques have several advantages, including high recognition ability, long-term durability, low cost, and robustness, allowing molecularly imprinted polymers to be employed in drug delivery, biosensor technology, and nanotechnology. Molecular imprinted polymer-based sensors still have certain shortcomings in determining biomacromolecules (nucleic acid, protein, lipids, and carbohydrates), considering the vast volume of the latest literature on biomicromolecules. These potential materials are still required to address a few weaknesses until gaining their position in recognition of biomacromolecules. This review aims to highlight the current progress in molecularly imprinted polymers (MIPs)-based sensors for the determination of deoxyribonucleic acid (DNA) or nucleobases.
  14. Thevendran R, Navien TN, Meng X, Wen K, Lin Q, Sarah S, et al.
    Anal Biochem, 2020 07 01;600:113742.
    PMID: 32315616 DOI: 10.1016/j.ab.2020.113742
    The performance of aptamers as versatile tools in numerous analytical applications is critically dependent on their high target binding specificity and selectivity. However, only the technical or methodological aspects of measuring aptamer-target binding affinities are focused, ignoring the equally important mathematical components that play pivotal roles in affinity measurements. In this study, we aim to provide a comprehensive review regarding the utilization of different mathematical models and equations, along with a detailed description of the computational steps involved in mathematically deriving the binding affinity of aptamers against their specific target molecules. Mathematical models ranging from one-site binding to multiple aptameric binding site-based models are explained in detail. Models applied in several different approaches of affinity measurements such as thermodynamics and kinetic analysis, including cooperativity and competitive-assay based mathematical models have been elaborately discussed. Mathematical models incorporating factors that could potentially affect affinity measurements are also further scrutinized.
  15. An Y, Cipollo JF
    Anal Biochem, 2011 Aug 1;415(1):67-80.
    PMID: 21545787 DOI: 10.1016/j.ab.2011.04.018
    Here a mass spectrometry-based platform for the analysis of glycoproteins is presented. Glycopeptides and released glycans are analyzed, the former by quadrupole orthogonal time-of-flight liquid chromatography/mass spectrometry (QoTOF LC/MS) and the latter by permethylation analysis using matrix-assisted laser desorption/ionization (MALDI)-TOF MS. QoTOF LC/MS analysis reveals the stochastic distribution of glycoforms at occupied sequons, and the latter provides a semiquantitative assessment of overall protein glycosylation. Hydrophilic interaction chromatography (HILIC) was used for unbiased enrichment of glycopeptides and was validated using five model N-glycoproteins bearing a wide array of glycans, including high-mannose, complex, and hybrid subtypes such as sulfo and sialyl forms. Sialyl and especially sulfated glycans are difficult to analyze because these substitutions are labile. The conditions used here allow detection of these compounds quantitatively, intact, and in the context of overall glycosylation. As a test case, we analyzed influenza B/Malaysia/2506/2004 hemagglutinin, a component of the 2006-2007 influenza vaccine. It bears 11 glycosylation sites. Approximately 90% of its glycans are high mannose, and 10% are present as complex and hybrid types, including those with sulfate. The stochastic distribution of glycoforms at glycosylation sites is revealed. This platform should have wide applications to glycoproteins in basic sciences and industry because no apparent bias for any glycoforms is observed.
  16. Daud SS, Ibrahim K, Choong SS, Vengidasan L, Chong LA, Ariffin H
    Anal Biochem, 2010 Feb 15;397(2):181-5.
    PMID: 19822126 DOI: 10.1016/j.ab.2009.10.008
    Following hematopoietic stem cell transplantation (HSCT), it is important to determine whether engraftment is successful and to track the dynamic changes of the graft. Tandem repeats such as minisatellites and microsatellites are currently the most established markers for chimerism application. We have developed a reliable method to quantitatively evaluate engraftment status in post-allogeneic HSCT patients using variable number of tandem repeat (VNTR) markers and "lab-on-a-chip" microfluidic electrophoresis technology. Following identification of an informative marker by conventional polymerase chain reaction (PCR), donor chimerism percentage was calculated based on a standard curve generated from artificially mixed patient-donor DNA-specific alleles in serial dilutions. All PCR products were mixed with commercial gel dye and loaded into Agilent DNA 1000 microfluidic LabChips for DNA sizing and quantitation. In 44 patients, separation of pretransplant and donor DNA fragments was resolved clearly and accomplished rapidly within 30min. Chimerism analysis using this platform is able to detect an amount as low as 6.3% donor DNA with acceptable coefficient of variation values. We also demonstrated concordant chimerism analysis findings using both microchip tandem repeats and real-time PCR quantitation of insertion-deletion polymorphisms. This microchip platform obviates the need for fluorescently labeled primers or any post-PCR sample manipulation. Quantitative monitoring of post-HSCT chimerism status using microfluidic electrophoresis is a useful tool for both large- and small-scale post-HSCT chimerism centers.
  17. Akhter S, Basirun WJ, Alias Y, Johan MR, Bagheri S, Shalauddin M, et al.
    Anal Biochem, 2018 06 15;551:29-36.
    PMID: 29753720 DOI: 10.1016/j.ab.2018.05.004
    In the present study, a nanocomposite of f-MWCNTs-chitosan-Co was prepared by the immobilization of Co(II) on f-MWCNTs-chitosan by a self-assembly method and used for the quantitative determination of paracetamol (PR). The composite was characterized by field emission scanning electron microscopy (FESEM) and energy dispersive x-ray analysis (EDX). The electroactivity of cobalt immobilized on f-MWCNTs-chitosan was assessed during the electro-oxidation of paracetamol. The prepared GCE modified f-MWCNTs/CTS-Co showed strong electrocatalytic activity towards the oxidation of PR. The electrochemical performances were investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV). Under favorable experimental conditions, differential pulse voltammetry showed a linear dynamic range between 0.1 and 400 μmol L-1 with a detection limit of 0.01 μmol L-1 for the PR solution. The fabricated sensor exhibited significant selectivity towards PR detection. The fabricated sensor was successfully applied for the determination of PR in commercial tablets and human serum sample.
  18. Omar MN, Salleh AB, Lim HN, Ahmad Tajudin A
    Anal Biochem, 2016 09 15;509:135-141.
    PMID: 27402177 DOI: 10.1016/j.ab.2016.06.030
    Measurement of the uric acid level in the body can be improved by biosensing with respect to the accuracy, sensitivity and time consumption. This study has reported the immobilization of uricase onto graphene oxide (GO) and its function for electrochemical detection of uric acid. Through chemical modification of GO using 1-ethyl-3-(dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysulfosuccinimide (NHS) as cross-linking reagents, the enzyme activity of the immobilized uricase was much comparable to the free enzyme with 88% of the activity retained. The modified GO-uricase (GOU) was then subjected to electrocatalytic detection of uric acid (UA) via cyclic voltammetry (CV). For that reason, a glassy carbon electrode (GCE) was modified by adhering the GO along with the immobilized uricase to facilitate the redox reaction between the enzyme and the substrate. The modified GOU/GCE outperformed a bare electrode through the electrocatalytic activity with an amplified electrical signal for the detection of UA. The electrocatalytic response showed a linear dependence on the UA concentration ranging from 0.02 to 0.49 mM with a detection limit of 3.45 μM at 3σ/m. The resulting biosensor also exhibited a high selectivity towards UA in the presence of other interference as well as good reproducibility.
  19. Yeang HY, Yusof F, Abdullah L
    Anal Biochem, 1995 Mar 20;226(1):35-43.
    PMID: 7785777
    Many proteins derived from the latex of Hevea brasiliensis that remain soluble in trichloroacetic acid (TCA) can be precipitated by phosphotungstic acid (PTA). A combination of 5% TCA and 0.2% PTA precipitates a wide range of proteins effectively even when they are present in low concentrations (below 1 microgram ml-1). In addition to its protein purification function, acid precipitation also increases the sensitivity of the subsequent protein assay by allowing the test sample to be concentrated. Another advantage of protein precipitation by TCA and PTA is that very small amounts of protein (of the order of 10 micrograms) can be repeatably recovered without the use of precipitate-bulking agents such as sodium deoxycholate. This general procedure of protein purification and concentration is simple and rapid, but the use of PTA may not be fully compatible with the Bradford protein assay. A modified Lowry microassay is described which enables about 3 micrograms ml-1 to be quantitated at the photometric absorbance of 0.05. When used in conjunction with protein concentration by precipitating with TCA/PTA, approximately 0.4 microgram ml-1 protein present in 6 ml of solution can be assayed.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links