Displaying publications 21 - 40 of 73 in total

Abstract:
Sort:
  1. Sammugam L, Pasupuleti VR
    Crit Rev Food Sci Nutr, 2019;59(17):2746-2759.
    PMID: 29693412 DOI: 10.1080/10408398.2018.1468729
    Processed foods, generally known as modified raw foods produced by innovative processing technologies alters the food constituents such natural enzymes, fatty acids, micronutrients, macronutrients and vitamins. In contrast to fresh and unprocessed foods, processed foods are guaranteed to be safer, imperishable, long lasting and consist high level of nutrients bioactivity. Currently, the evolution in food processing technologies is necessary to face food security and safety, nutrition demand, its availability and also other global challenges in the food system. In this scenario, this review consists of information on two food processing technologies, which effects on processed foods before and after processing and the impact of food products on human health. It is also very well established that understanding the type and structure of foods to be processed can assist food processing industries towards advancement of novel food products. In connection with this fact, the present article also discusses the emerging trends and possible modifications in food processing technologies with the combination of conventional and modern techniques to get the suitable nutritional and safety qualities in food.
  2. Wong FC, Chai TT, Xiao J
    Crit Rev Food Sci Nutr, 2019;59(6):947-952.
    PMID: 29787299 DOI: 10.1080/10408398.2018.1479681
    In our diets, many of the consumed foods are subjected to various forms of heating and thermal processing. Besides enhancing the taste, texture, and aroma of the foods, heating helps to sterilize and facilitate food storage. On the other hand, heating and thermal processing are frequently reported during the preparation of various traditional herbal medicines. In this review, we intend to highlight works by various research groups which reported on changes in phytochemicals and bioactivities, following thermal processing of selected plant-derived foods and herbal medicines. Relevant cases from plant-derived foods (garlic, coffee, cocoa, barley) and traditional herbal medicines (Panax ginseng, Polygonum multiforum, Aconitum carmichaelii Debeaux, Angelica sinensis Radix) will be presented in this review. Additionally, related works using pure phytochemical compounds will also be highlighted. In some of these cases, the amazing formation of new compounds were being reported. Maillard reaction could be concluded as the predominant pathway leading to the formation of new conjugates, along with other possibilities being suggested (degradation, transglycosylation, deglycosylation and dehydration). With collective efforts from all researchers, it is hoped that more details will be revealed and lead to the possible discovery of new, heat-mediated phytochemical conjugates.
  3. Misra S, Mohanty D
    Crit Rev Food Sci Nutr, 2019;59(8):1230-1236.
    PMID: 29190117 DOI: 10.1080/10408398.2017.1399860
    Gut microbiomes may have a significant impact on mood and cognition, which is leading experts towards a new frontier in neuroscience. Studies have shown that increase in the amount of good bacteria in the gut can curb inflammation and cortisol level, reduces symptoms of depression and anxiety, lowers stress reactivity, improves memory and even lessens neuroticism and social anxiety. This shows that, probably the beneficial gut bacteria or probiotics function mechanistically as delivery vehicles for neuroactive compounds. Thus, a psychobiotic is a live organism, when ingested in adequate amounts, produces a health benefit in patients suffering from psychiatric illness. Study of these novel class of probiotics may open up the possibility of rearrangement of intestinal microbiota for effective management of various psychiatric disorders.
  4. Chang SK, Alasalvar C, Shahidi F
    Crit Rev Food Sci Nutr, 2019;59(10):1580-1604.
    PMID: 29360387 DOI: 10.1080/10408398.2017.1422111
    The term "superfruit" has gained increasing usage and attention recently with the marketing strategy to promote the extraordinary health benefits of some exotic fruits, which may not have worldwide popularity. This has led to many studies with the identification and quantification of various groups of phytochemicals. This contribution discusses phytochemical compositions, antioxidant efficacies, and potential health benefits of the main superfruits such as açai, acerola, camu-camu, goji berry, jaboticaba, jambolão, maqui, noni, and pitanga. Novel product formulations, safety aspects, and future perspectives of these superfruits have also been covered. Research findings from the existing literature published within the last 10 years have been compiled and summarized. These superfruits having numerous phytochemicals (phenolic acids, flavonoids, proanthocyanidins, iridoids, coumarins, hydrolysable tannins, carotenoids, and anthocyanins) together with their corresponding antioxidant activities, have increasingly been utilized. Hence, these superfruits can be considered as a valuable source of functional foods due to the phytochemical compositions and their corresponding antioxidant activities. The phytochemicals from superfruits are bioaccessible and bioavailable in humans with promising health benefits. More well-designed human explorative studies are needed to validate the health benefits of these superfruits.
  5. McGrattan A, van Aller C, Narytnyk A, Reidpath D, Keage H, Mohan D, et al.
    PMID: 33337250 DOI: 10.1080/10408398.2020.1848785
    Dementia represents a key impending global health challenge. The aim of this systematic review was to evaluate the current evidence on nutritional interventions for the prevention of dementia in developing economies in East-Asia. Four comprehensive databases were searched from inception until January 2020: MEDLINE, Embase, PsycInfo, and Scopus. The search was restricted to randomized controlled trials [RCTs] in adult humans, assessing the effect of nutritional interventions on global and domain specific cognitive performance and dementia risk. Meta-analysis of data was conducted for each domain and sub-categorized according to the type of nutritional intervention. Twenty-four RCTs were included, of which, fifteen studies showed significant beneficial effects on cognition. Eighteen studies were included in the meta-analysis. Significant beneficial effects were found for essential fatty acids (EPA/DHA) and micronutrient supplementation on specific cognitive domains including attention and orientation, perception, verbal functions and language skills. The effect size of the interventions appeared to be greater in older subjects with cognitive impairment. Supplementation with B-vitamins and essential fatty acids may represent promising strategies to minimize age-related cognitive decline in Asian populations. Large, high-quality, long-term trials are needed to confirm these findings.
  6. Alhabeeb H, Kord-Varkaneh H, Tan SC, Găman MA, Otayf BY, Qadri AA, et al.
    PMID: 33356450 DOI: 10.1080/10408398.2020.1863905
    BACKGROUND: Inconsistencies exist with regard to the influence of omega-3 supplementation on 25-hydroxyvitamin D (25(OH)D) levels, which could be attributed to many factors, such as the duration and dose of omega-3 supplementation, and individuals' baseline 25(OH)D levels. Therefore, to address the inconsistencies, we conducted a systematic review and dose-response meta-analysis to accurately determine the effect of omega-3 supplementation on 25(OH)D levels in humans.

    METHODS: We performed a comprehensive literature search in Web of Science, PubMed/Medline, Scopus, and Embase databases from inception up to January 2020. We included only randomized controlled trials (RCTs). We used weighted mean difference (WMD) with 95% confidence interval (CI) to assess the influence of omega-3 supplementation on serum 25(OH)D levels using the random-effects model.

    RESULTS: Our pooled results of 10 RCTs demonstrated an overall significant increase in 25(OH)D levels following omega-3 intake (WMD = 3.77 ng/ml, 95% CI: 1.29, 6.25). In addition, 25(OH)D levels were significantly increased when the intervention duration lasted >8 weeks and when the baseline serum 25(OH)D level was ˂20 ng/ml. Moreover, omega-3 intake ≤1000 mg/day resulted in higher 25(OH)D levels compared to omega-3 intake >1000 mg/day.

    CONCLUSION: In conclusion, omega-3 supplementation increased 25(OH)D concentrations, particularly with dosages ≤1000 mg/day and intervention durations >8 weeks.

  7. Gao P, Mohd Noor NQI, Md Shaarani S
    PMID: 33356490 DOI: 10.1080/10408398.2020.1866490
    Food safety issues associated with aquatic food products become more important with the increasing consumption and followed by its ongoing challenges. The objective of this paper is to review the food safety hazards and health risks related to aquatic food products for the Southeast Asian region. These hazards can be categorized as microplastics (MPs) hazard, biological hazards (pathogenic bacteria, biogenic amines, viruses, parasites), and chemical hazards (antimicrobial, formaldehyde, heavy metal). In different Southeast Asian countries, the potential health risks of aquatic food products brought by food hazards to consumers were at different intensity and classes. Among all these hazards, pathogenic bacteria, antimicrobials, and heavy metal were a particular concern in the Southeast Asian region. With environmental changes, evolving consumption patterns, and the globalization of trade, new food safety challenges are created, which put forward higher requirements on food technologies, food safety regulations, and international cooperation.
  8. Lee YY, Tang TK, Phuah ET, Tan CP, Wang Y, Li Y, et al.
    Crit Rev Food Sci Nutr, 2020;60(15):2509-2525.
    PMID: 31418288 DOI: 10.1080/10408398.2019.1650001
    Diacylglycerol (DAG) is a world leading anti-obesity functional cooking oil synthesized via structural modification of conventional fats and oils. DAG exits in three stereoisomers namely sn-1,2-DAG, sn-1,3-DAG, and sn-2,3-DAG. DAG particularly sn-1,3-DAG demonstrated to have the potential in suppressing body fat accumulation and lowering postprandial serum triacylglycerol, cholesterol and glucose level. DAG also showed to improve bone health. This is attributed to DAG structure itself that caused it to absorb and digest via different metabolic pathway than conventional fats and oils. With its purported health benefits, many studies attempt to enzymatically or chemically synthesis DAG through various routes. DAG has also received wide attention as low calorie fat substitute and has been incorporated into various food matrixes. Despite being claimed as healthy cooking oil the safety of DAG still remained uncertain. DAG was banned from sale as it was found to contain probable carcinogen glycidol fatty acid esters. The article aims to provide a comprehensive and latest review of DAG emphasizing on its structure and properties, safety and regulation, process developments, metabolism and beneficial health attributes as well as its applications in the food industry.
  9. Zielinska M, Ropelewska E, Xiao HW, Mujumdar AS, Law CL
    Crit Rev Food Sci Nutr, 2020;60(13):2212-2264.
    PMID: 31257908 DOI: 10.1080/10408398.2019.1632788
    The growing concerns over product quality have increased demand for high quality dried food products and encouraged researchers to explore and producers of such products to implement novel microwave (MW)-assisted drying methods. This paper presents a critical review of the key principles and drawbacks of MW-assisted drying as well as needs for future research. In this article, recent research into application of microwaves as an alternative heat source, applications and progress in hybrid MW-assisted drying that rely on various drying media and combined two or three stages of MW-assisted drying for the preservation of food products is reviewed critically. The effect of different MW-assisted drying methods, conditions and initial pretreatments on the thermophysical properties, color, nutritional value and rehydration potential of dried food products is discussed in detail along with the discussion on how the material properties evolve and change in structure, color, and composition during MW-assisted drying and recent attempts at mathematical modeling of these changes made for different fruits and vegetables. It should be noted that most of the published results were obtained in laboratory-scale dryers. Pilot-scale testing is needed to bridge the gap between laboratory research and industrial applications to fulfill the potential for novel hybrid and combined MW-assisted drying methods and to expand their role in food processing.
  10. Kwasek K, Thorne-Lyman AL, Phillips M
    Crit Rev Food Sci Nutr, 2020;60(22):3822-3835.
    PMID: 31983214 DOI: 10.1080/10408398.2019.1708698
    Achieving Sustainable Development Goal 2 of zero hunger and malnutrition by 2030 will require dietary shifts that include increasing the consumption of nutrient dense foods by populations in low- and middle-income countries. Animal source foods are known to be rich in a number of highly bioavailable nutrients that otherwise are not often consumed in the staple-food based diets of poorer populations throughout the world. Fish is the dominant animal source food in many low- and middle-income countries in the global south and is available from both fisheries and aquaculture. Consumers often perceive that wild caught fish have higher nutritional value than fish produced through aquaculture, and this may be true for some nutrients, for example omega-3 fatty acid content. However, there is potential to modify the nutritional value of farmed fish through feeds and through production systems, illustrated by the common practice of supplementing omega-3 fatty acids in fish diets to optimize their fatty acid profile. This manuscript reviews the evidence related to fish feeds and the nutritional composition of fish with respect to a number of nutrients of interest to human health, including iron, zinc, vitamins A and D, selenium, calcium, and omega-3 fatty acids, with low- and middle-income country populations in mind. In general, we find that the research on fortification of fish diet particularly with vitamins and minerals has not been directed toward human health but rather toward improvement of fish growth and health performance. We were unable to identify any studies directly exploring the impact of fish feed modification on the health of human consumers of fish, but as nutrition and health rises in the development agenda and consumer attention, the topic requires more urgent attention in future feed formulations.
  11. Acquah C, Agyei D, Obeng EM, Pan S, Tan KX, Danquah MK
    Crit Rev Food Sci Nutr, 2020;60(7):1195-1206.
    PMID: 30714390 DOI: 10.1080/10408398.2018.1564234
    The food and health applications of bioactive peptides have grown remarkably in the past few decades. Current elucidations have shown that bioactive peptides have unique structural arrangement of amino acids, conferring distinct functionalities, and molecular affinity characteristics. However, whereas interest in the biological potency of bioactive peptides has grown, cost-effective techniques for monitoring the structural changes in these peptides and how these changes affect the biological properties have not grown at the same rate. Due to the high binding affinity of aptamers for other biomolecules, they have a huge potential for use in tracking the structural, conformational, and compositional changes in bioactive peptides. This review provides an overview of bioactive peptides and their essential structure-activity relationship. The review further highlights on the types and methods of synthesis of aptamers before the discussion of the prospects, merits, and challenges in the use of aptamers for bioaffinity interactions with bioactive peptides.
  12. Ahmad Tarmizi AH, Kuntom A
    PMID: 33397128 DOI: 10.1080/10408398.2020.1865264
    3-monochloropropane-1,2-diol esters (3-MCPDE) and glycidyl esters (GE) are processed-developed contaminants presence in vegetable oils after undergo refining process under excessive heat. Refined oils are extensively used in various frying applications, nevertheless, the reservation against their quality and safety aspects are of major concern to consumers and food industry. Realizing the importance to address these issues, this article deliberates an overview of published studies on the manifestation of 3-MCPDE and GE when vegetable oils undergo for frying process. With the modest number of published frying research associated to 3-MCPDE and GE, we confined our review from the perspectives of frying conditions, product properties, antioxidants and additives, pre-frying treatments and frying oil management. Simplicity of the frying process is often denied by the complexity of reactions occurred between oil and food which led to the development of unwanted contaminants. The behavior of 3-MCPDE and GE is closely related to physico-chemical characteristics of oils during frying. As such, relationships between 3-MCPDE and/or GE with frying quality indices - i.e. acidity in term of free fatty acid or acid value); secondary oxidation in term of p-anisidine value, total polar compounds and its fractions, and refractive index - were also discussed when oils were subjected under intermittent and continuous frying conditions.
  13. Alrosan M, Tan TC, Easa AM, Gammoh S, Alu'datt MH
    PMID: 33455424 DOI: 10.1080/10408398.2021.1871589
    The application of protein-protein interaction (PPI) has been widely used in various industries, such as food, nutraceutical, and pharmaceutical. A deeper understanding of PPI is needed, and the molecular forces governing proteins and their interaction must be explained. The design of new structures with improved functional properties, e.g., solubility, emulsion, and gelation, has been fueled by the development of structural and colloidal building blocks. In this review, the molecular forces of protein structures are discussed, followed by the relationship between molecular force and structure, ways of a bind of proteins together in solution or at the interface, and functional properties. A more detailed look is thus taken at the relationship between the various influencing factors on molecular forces involved in PPI. These factors include protein properties, such as types, concentration, and mixing ratio, and solvent conditions, such as ionic strength and pH. This review also summarizes methods tha1t are capable of identifying molecular forces in protein and PPI, as well as characterizing protein structure.
  14. Lee YY, Tang TK, Chan ES, Phuah ET, Lai OM, Tan CP, et al.
    PMID: 33480262 DOI: 10.1080/10408398.2021.1873729
    Structured lipid is a type of modified form of lipid that is "fabricated" with the purpose to improve the nutritional and functional properties of conventional fats and oils derived from animal and plant sources. Such healthier choice of lipid received escalating attention from the public for its capability to manage the rising prevalence of metabolic syndrome. Of which, medium-chain triacylglycerol (MCT) and medium-and long-chain triacylglycerol (MLCT) are the few examples of the "new generation" custom-made healthful lipids which are mainly composed of medium chain fatty acid (MCFA). MCT is made up exclusively of MCFA whereas MLCT contains a mixture of MCFA and long chain fatty acid (LCFA), respectively. Attributed by the unique metabolism of MCFA which is rapidly metabolized by the body, MCFA and MCT showed to acquire multiple physiological and functional properties in managing and reversing certain health disorders. Several chemically or enzymatically oils and fats modification processes catalyzed by a biological or chemical catalyst such as acidolysis, interesterification and esterification are adopted to synthesis MCT and MLCT. With their purported health benefits, MCT and MLCT are widely being used as nutraceutical in food and pharmaceutical sectors. This article aims to provide a comprehensive review on MCT and MLCT, with an emphasis on the basic understanding of its structures, properties, unique metabolism; the current status of the touted health benefits; latest routes of production; its up-to-date applications in the different food systems; relevant patents filed and its drawbacks.
  15. Wang Y, Lim YY, He Z, Wong WT, Lai WF
    PMID: 33559482 DOI: 10.1080/10408398.2021.1882381
    The last decide has witnessed a growing research interest in the role of dietary phytochemicals in influencing the gut microbiota. On the other hand, recent evidence reveals that dietary phytochemicals exhibit properties of preventing and tackling symptoms of Alzheimer's disease, which is a neurodegenerative disease that has also been linked with the status of the gut microbiota over the last decade. Till now, little serious discussions, however, have been made to link recent understanding of Alzheimer's disease, dietary phytochemicals and the gut microbiota together and to review the roles played by phytochemicals in gut dysbiosis induced pathologies of Alzheimer's disease. Deciphering these connections can provide insights into the development and future use of dietary phytochemicals as anti-Alzheimer drug candidates. This review aims at presenting latest evidence in the modulating role of phytochemicals in the gut microbiota and its relevance to Alzheimer's disease and summarizing the mechanisms behind the modulative activities. Limitations of current research in this field and potential directions will also be discussed for future research on dietary phytochemicals as anti-Alzheimer agents.
  16. Allam VSRR, Chellappan DK, Jha NK, Shastri MD, Gupta G, Shukla SD, et al.
    PMID: 33977840 DOI: 10.1080/10408398.2021.1915744
    Respiratory diseases, both acute and chronic, are reported to be the leading cause of morbidity and mortality, affecting millions of people globally, leading to high socio-economic burden for the society in the recent decades. Chronic inflammation and decline in lung function are the common symptoms of respiratory diseases. The current treatment strategies revolve around using appropriate anti-inflammatory agents and bronchodilators. A range of anti-inflammatory agents and bronchodilators are currently available in the market; however, the usage of such medications is limited due to the potential for various adverse effects. To cope with this issue, researchers have been exploring various novel, alternative therapeutic strategies that are safe and effective to treat respiratory diseases. Several studies have been reported on the possible links between food and food-derived products in combating various chronic inflammatory diseases. Nutraceuticals are examples of such food-derived products which are gaining much interest in terms of its usage for the well-being and better human health. As a consequence, intensive research is currently aimed at identifying novel nutraceuticals, and there is an emerging notion that nutraceuticals can have a positive impact in various respiratory diseases. In this review, we discuss the efficacy of nutraceuticals in altering the various cellular and molecular mechanisms involved in mitigating the symptoms of respiratory diseases.
  17. Jafarzadeh S, Jafari SM
    Crit Rev Food Sci Nutr, 2021;61(16):2640-2658.
    PMID: 32631073 DOI: 10.1080/10408398.2020.1783200
    New food packaging materials provide an attractive option for the advancement of nanomaterials. The poor thermal, mechanical, chemical, and physical properties of biopolymers and their inherent permeability to gases and vapor have increased this interest. Polymeric materials (matrix) in modern technologies require a filler, which can react/interact with the available matrix to provide a new formulation with improved packaging properties including oxygen permeability, moisture permeability, crystalline structure, barrier properties, morphology, thermal stability, optical properties, anti-microbial characteristics, and mechanical properties. The performance of nanocomposite films and packaging is dependent on the size of the nanofillers used and the uniformity of the nanoparticles (NPs) distribution and dispersion in the matrix. Advancement in nanocomposite technologies is expected to grow with the advent of sustainable, low price, environmentally friendly materials with an enhanced performance. The current review addresses advances in the biopolymeric nanocomposites as alternatives to petroleum plastics in the food packaging industry. It also provides a brief description of biopolymer nanocomposite films and gives general information about different metal NPs with an emphasis on their influence on the emerging characteristics of biodegradable films. The results of recent reports provide a better understanding of the influence of metal NPs in food packaging.
  18. Hj Latip DN, Samsudin H, Utra U, Alias AK
    Crit Rev Food Sci Nutr, 2021;61(17):2841-2862.
    PMID: 32648775 DOI: 10.1080/10408398.2020.1789064
    Starch is a complex carbohydrate formed by the repeating units of glucose structure connected by the alpha-glycosidic linkages. Starch is classified according to their derivatives such as cereals, legumes, tubers, palms, fruits, and stems. For decades, native starch has been widely utilized in various applications such as a thickener, stabilizer, binder, and coating agent. However, starches need to be modified to enhance their properties and to make them more functional in a wide range of applications. Porous starch is a modified starch product which has attracted interest of late. It consists of abundant pores that are distributed on the granule surface without compromising the integrity of its granular structure. Porous starch can be produced either by enzymatic, chemical, and physical methods or a combination thereof. The type of starch and selection of the modification method highly influence the formation of pore structure. By carefully choosing a suitable starch and modification method, the desired morphology of porous starch can be produced and applied accordingly for its intended application. Innovations and technologies related to starch modification methods have evolved over the years in terms of the structure, properties and modification effects of different starch varieties. Therefore, this article reviews recent modification methods in developing porous starch from various origins.
  19. Fatahi S, Nazary-Vannani A, Sohouli MH, Mokhtari Z, Kord-Varkaneh H, Moodi V, et al.
    Crit Rev Food Sci Nutr, 2021;61(20):3383-3394.
    PMID: 32744094 DOI: 10.1080/10408398.2020.1798350
    Inconsistencies exist with regard to influence of fasting and energy-restricting diets on markers of glucose and insulin controls. To address these controversial, this study was conducted to determine the impact of fasting diets on fasting blood sugars (FBSs), insulin, homeostatic model assessment insulin resistance (HOMA-IR) and hemoglobin A1c (HbA1c) levels. A comprehensive systematic search was carried out in electronic databases, i.e., Scopus, PubMed, and Web of Science through June 2019 for RCTs that investigated the impact of fasting and energy-restricting diets on circulating FBS, insulin, HOMA-IR and HbA1c levels from. Weighted mean difference (WMD) with the 95% CI were used for estimating combined effect size. The subgroup analysis was applied to specify the source of heterogeneity among articles. Pooled results from 30 eligible articles with 35 arms demonstrated a significant decrease in FBS (WMD): -3.376 mg/dl, 95% CI: -5.159, -1.594, p 8 weeks had a greater reduction in FBS, insulin and HOMA-IR level compared with other subgroups. The evidence from available studies suggests that the fasting or energy-restricting diets leads to significant reductions in FBS, insulin and HOMA-IR level and has modest, but, non-significant effects on HbA1c levels.
  20. Tong SC, Siow LF, Tang TK, Lee YY
    PMID: 36377721 DOI: 10.1080/10408398.2022.2143477
    As a nutrient rich emulsion extracted from plant materials, plant-based milk (PBM) has been the latest trend and hot topic in the food industry due to the growing awareness of consumers toward plant-based products in managing the environmental (carbon footprint and land utility), ethical (animal well-fare) and societal (health-conscious) issues. There have been extensive studies and reviews done to discuss the distinct perspective of PBM including its production, health effects and market acceptance. However, not much has been emphasized on the valuable antioxidants present in PBM which is one of the attributes making them stand apart from dairy milk. The amounts of antioxidants in PBM are important. They offered tremendous health benefits in maintaining optimum health and reducing the risk of various health disorders. Therefore, enhancing the extraction of antioxidants and preserving their activity during production and storage is important. However, there is a lack of a comprehensive review of how these antioxidants changes in response to different processing steps involved in PBM production. Presumably, antioxidants in PBM could be potentially lost due to thermal degradation, oxidation or leaching into processing water. Hence, this paper aims to fill the gaps by addressing an extensive review of how different production steps (germination, roasting, soaking, blanching, grinding and filtration, and microbial inactivation) affect the antioxidant content in PBM. In addition, the effect of different microbial inactivation treatments (thermal or non-thermal processing) on the alteration of antioxidant in PBM was also highlighted. This paper can provide useful insight for the industry that aims in selecting suitable processing steps to produce PBM products that carry with them a health declaration.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links