The smaller particles that dominate the particle number concentration (PNC) in the ambient air only contribute to a small percentage of particulate matter (PM) mass concentration although present in high particle number concentration. These small particles may be neglected upon assessing the health impacts of the PM. Hence, the knowledge on the particle number concentration size distribution deserves greater attention than the particulate mass concentration. This study investigates the measurement of the particle mass concentrations (PM2.5) and PNC of 0.27 μm
The aim of the present study was to appraise the levels of heavy metal contamination (Zn and Pb) in sediment of the Langat River (Selangor, Malaysia). Samples were collected randomly from 15 sampling stations located along the Langat River. The parameters measured were pH, redox potential, salinity, electrical conductivity, loss of ignition, cation exchanges capacity (Na, Mg, Ca, K), and metal ions (Zn and Pb). The geo-accumulation index (I geo) and contamination factor (C f) were applied to determine and classify the magnitude of heavy metal pollution in this urban river sediment. Results revealed that the I geo of Pb indicated unpolluted to moderately polluted sediment at most of the sampling stations, whereas Zn was considered to be within background concentration. The I geo results were refined by the C f values, which showed Pb with very high C f at 12 stations. Zinc, on the other hand, had low to moderate C f values. These findings indicated that the sediment of the Langat River is severely polluted with Pb. The Zn concentration at most sampling points was well below most sediment quality guidelines. However, 40% of the sampling points were found to have a Pb concentration higher than the consensus-based probable effect concentration of 128 mg/kg (concentrations above this value are likely to cause harmful effects). This result not only highlights the severity of Pb pollution in the sediment of the Langat River, but also the potential risk it poses to the environment.
Rapid increase in industrialization and urbanization in the west coast of Peninsular Malaysia has led to the intense release of petroleum and products of petroleum into the environment. Surface sediment samples were collected from the Selangor River in the west coast of Peninsular Malaysia during four climatic seasons and analyzed for PAHs and biomarkers (hopanes). Sediments were soxhlet extracted and further purified and fractionated through first and second step column chromatography. A gas chromatography-mass spectrometry (GC-MS) was used for analysis of PAHs and hopanes fractions. The average concentrations of total PAHs ranged from 219.7 to 672.3 ng g-1 dw. The highest concentrations of PAHs were detected at 964.7 ng g-1 dw in station S5 in the mouth of the Selangor River during the wet inter-monsoonal season. Both pyrogenic and petrogenic PAHs were detected in the sediments with a predominance of the former. The composition of hopanes was homogeneous showing that petroleum hydrocarbons share an identical source in the study area. Diagnostic ratios of hopanes indicated that some of the sediment samples carry the crankcase oil signature.
The concentration profile, distribution and risk assessment of pharmaceutically active compounds (PhACs) in the coastal surface water from the Klang River estuary were measured. Surface coastal water samples were extracted using offline solid phase, applying polymeric C18 cartridges as extraction sorbent and measuring with liquid chromatography mass spectrometry-mass spectrometry (LC MS-MS) technique. Extraction method was optimized for its recovery, sensitivity and linearity. Excellent recoveries were obtained from the optimized method with percentage of recoveries ranging from 73 to 126%. The optimized analytical method achieved good sensitivity with limit of detection ranging from 0.05 to 0.15 ng L-1, while linearity of targeted compounds in the LC MS-MS system was more than 0.990. The results showed that amoxicillin has the highest concentration (102.31 ng L-1) followed by diclofenac (10.80 ng L-1) and primidone (7.74 ng L-1). The percentage of contribution (% of total concentration) for the targeted PhACs is in the following order; amoxicillin (92.90%) > diclofenac (3.95%) > primidone (1.23%) > dexamethasone (0.75%) > testosterone (0.70%) > sulfamethoxazole (0.33%) > progesterone (0.14%). Environmental risk assessment calculated based on deterministic approach (the RQ method), showed no present risk from the presence of PhACs in the coastal water of Klang River estuary. Nonetheless, this baseline assessment can be used for better understanding on PhACs pollution profile and distribution in the tropical coastal and estuarine ecosystem as well as for future comparative studies.
Sediment can accumulate trace elements in the environment. This study profiled the magnitude of As, Ba, Cd, Co, Cu, Cr, Ni, Pb, Se, and Zn pollution in surface sediments of the west coast of Peninsular Malaysia. Trace elements were digested using aqua regia and were analyzed using the inductively coupled plasma-mass spectrometry. The extent of elemental pollution was evaluated using with the enrichment factor (EF) and geoaccumulation index (Igeo). This study found that the elemental distribution in the sediment in descending order was Zn > Ba > Cr > Pb > Cu > As > Ni > Co > Se > Cd. Zn concentrations in all samples were below the interim sediment quality guideline (ISQG) (124 mg/kg). In contrast, Cd concentrations (2.34 ± 0.01 mg/kg) at Station 31 (Merlimau) exceeded the ISQG (0.70 mg/kg), and the concentrations of As in the samples from Station 9 (Tanjung Dawai) exceeded the probable effect level (41.60 mg/kg). The Igeo and EF revealed that Station 9 and Station 31 were extremely enriched with Se and Cd, respectively. All stations posed low ecological risk, except Station 31, which had moderate ecological risk. The outputs from this study are expected to provide the background levels of pollutants and help develop regional sediment quality guideline values. This study is also important in aiding relevant authorities to set priorities for resources management and policy implementation.
Lead contamination in topsoil of the mining and smelting area of Mitrovica, Kosovo, was investigated for total concentrations and chemical fractions by sequential extraction analysis, mineralogical fractions by X-ray diffraction (XRD) and scanning electron microscopy with energy-dispersive X-ray spectrometer (SEM-EDX). The study revealed that all samples contained Pb exceeding USEPA standard of 400 mg kg-1. The highest total concentration of Pb (125,000 mg kg-1) was the soil from the former smelter. Sequential extraction results showed that the predominant form of Pb was associated with Fe-Mn oxide-bound fraction which ranged from 45.37 to 71.61% of total concentrations, while carbonate and silicate Pb-binding fractions were dominant when physical measurements (XRD and SEM-EDX) were applied. Application of Pb isotope ratios (206Pb/207Pb and 208Pb/206Pb), measured by inductively coupled plasma mass spectrometry, identified that Pb contamination is originated from similar anthropogenic source. The results reflected that the Pb contamination in the soil of this area is serious. In order to provide proper approaches on remediation and prevention of health impacts to the people in this area, a continuous monitoring and health risk assessment are recommended.
The chemical reactions of dry-disposed ash dump, ingressed oxygen, carbon dioxide, and infiltrating rainwater affect mineralogical transformation, redistribution, and migration of chemical species. Composite samples of weathered coal fly ash taken at various depths and fresh coal fly ash were examined using organic petrographic, X-ray diffraction, X-ray fluorescence techniques, and successive extraction procedures. Results obtained show relative enrichment of glass, Al-Fe-oxides, calcite, and tridymite in the weathered CFA, but the fresh CFA is enriched in mullite, inertinite, maghemite, and ettringite. The enrichment of the weathered CFA in amorphous glass suggests higher reactivity when compared to fresh CFA. The evident depletion of soluble oxides in the weathered CFA is attributed to flushing of the soluble salts by percolating rainwater. Comparative enrichment of examined elements in water-soluble, exchangeable, reducible, and residual fractions of the weathered CFA is partly due to the slow release of adsorbed chemical species from the alumina-silicate matrix and diffusion from the deeper sections of the particles of coal fly ash. Sodium and potassium show enrichment in the oxidisable fraction of fresh CFA. The estimated mobility factor indicates mobility for Ca, Mg, Na, Se, Mo, and Sb and K, Sr, V, Cu, Cr, Se, and B in fresh and weathered CFAs, respectively.
The research study was carried out to evaluate trace metals (Pb, Cd, Se, Al, Mn, Cu, Zn, Fe, As, Ni, Cr, and Ag) concentrations in groundwater of Lorong Serai 4, Hulu Langat, Selangor, Malaysia. Additionally, the research study focused on determining non-carcinogenic and carcinogenic health risks, sources of the contaminants, and effective remediation methods. The results show that the concentration levels of Pb, Cd, Se, Al, Cu, Zn, Ni, Cr, and Ag are lower than their corresponding permissible limits, while Fe, Mn, and As concentrations exceed their acceptable limit. The hazard index of the groundwater in the area exceeded the acceptable limit, showing the rate of carcinogenic and non-carcinogenic health effects associated with the water. The findings also indicate that the lifetime cancer risk is high compared to the maximum limits of lifetime cancer risk from the drinking water (10-6 to 10-4). The groundwater geochemical data of the area are used in establishing the source of Fe, Mn, and As metal ions. Evaluation of Fe2+/Fe3+ and S2-/SO42- redox couples and thermodynamic modelling indicates that the groundwater of the area is in redox disequilibrium. The groundwater samples contain aqueous iron sulphate, which is supersaturated, ferrous carbonate and aluminium sulphate that are saturated. The main state of redox disequilibrium is governed by mineral precipitation and dissolution. Aqueous arsenic and manganese are possibly derived from the dissolution of pyrite (arsenopyrite) and amorphous oxide-hydroxides, respectively. The high concentration of iron in the shallow groundwater in the area is primarily the result of silicate rock weathering of ferroan igneous and metamorphic minerals with a minor contribution from the oxidation of iron sulphides. Magnetite coated with graphene oxide (Fe3O4-GO) nanoparticles (NPs) was synthesized and characterized, and the adsorption preliminary experiments were carried out; and the Fe3O4-GO NPs show enhanced removal (Fe > As > Mn) capacity over graphene oxide (GO).
The application of organophosphorus pesticides (OPPs) increased gradually because of the rise in global food demand that triggered the agriculture sector to increase the production, leading to OPP residues in the surface water. This study elucidated the presence of OPPs and estimated its ecological risk in the riverine ecosystem of the urbanised Linggi River, Negeri Sembilan, Malaysia. The OPP concentration in surface water was determined using solid-phase extraction method and high-performance liquid chromatography coupled with diode array detection. Further, the ecological risk was estimated by using the risk quotient (RQ) method. The three OPPs, i.e. chlorpyrifos, diazinon, and quinalphos were detected with mean concentrations of 0.0275 µg/L, 0.0328 µg/L, and 0.0362 µg/L, respectively. The OPPs were at high risk (in general and worst cases) under acute exposure. The estimated risk of diazinon was observed as medium for general (RQm = 0.5857) and high for worst cases (RQex = 4.4678). Notably, the estimated risk for chlorpyrifos was high for both general and worst cases (RQm = 1.9643 and RQex = 11.5643) towards the aquatic ecosystem of the Linggi River. Chronic risk of quinalphos remains unknown because of the absence of toxicity endpoints. This study presented clear knowledge regarding OPP contamination and possible risk for aquatic ecosystems. Hence, OPPs should be listed as one of the main priority contaminants in pesticide mitigation management in the future.
Active pharmaceutical ingredients (APIs) are typical endocrine disruptors found in common pharmaceuticals and personal care products, which are frequently detected in aquatic environments, especially surface water treated for drinking. However, current treatment technologies are inefficient for removing emerging endocrine disruptors, leading to the potential contamination of tap water. This study employed an optimized analytical method comprising solid-phase extraction and liquid chromatography-tandem mass spectrometry (SPE-LC-MS/MS) to detect APIs in tap water in Putrajaya, Malaysia. Several therapeutic classes of pharmaceuticals and personal care products, including anti-inflammatory drugs (dexamethasone and diclofenac), antibiotics (sulfamethoxazole and triclosan), antiepileptics (primidone), antibacterial agents (ciprofloxacin), beta-blockers (propranolol), psychoactive stimulants (caffeine), and antiparasitic drugs (diazinon), were detected in the range of
The aim of this a pioneering research is to investigate linear alkylbenzenes (LABs) as biomarkers of sewage pollution in sediments collected from four rivers and estuaries of the south and east of Peninsular Malaysia. The sediment samples went through soxhlet extraction, two-step column chromatography purification, fractionation and gas chromatography-mass spectrometry (GC-MS) analysis. Principal component analysis (PCA) with multivariate linear regression (MLR) was used as well for source apportionment of LABs. The results of this study showed that total LAB concentration was 36-1196 ng g-1dw. The internal to external isomer ratios (I/E ratio) of LABs were from 0.56 to 3.12 indicated release of raw sewage and primary and secondary effluents into the environment of south and east of Peninsular Malaysia. Our research supported that continuous monitoring of sewage pollution to limit the environmental pollution in riverine and estuarine ecosystem.
Microplastics have been considered as contaminants of emerging concern due to ubiquity in the environment; however, the occurrence of microplastics in river estuaries is scarcely investigated. The Klang River estuary is an important ecosystem that receives various contaminants from urbanised, highly populated areas and the busiest maritime centre in Selangor, Malaysia. This study investigates the abundance and characteristics of microplastics in surface water of the Klang River estuary. The abundance of microplastics ranged from 0.5 to 4.5 particles L-1 with a mean abundance of 2.47 particles L-1. There is no correlation between the abundance of microplastics and physicochemical properties, while there is a strong correlation between salinity and conductivity. The microplastics were characterised with a stereomicroscope and attenuated total reflection-Fourier transform infrared spectroscopy to analyse size, shape, colour, and polymer composition. The microplastics in the surface water were predominantly in the 300-1000 μm size class, followed by > 1000 μm and
This study applied the use of sequential extraction technique and simple bioaccessibility extraction test to quantify the bioavailable fractions and the human bioaccessible concentration of metals collected from nine stations in surface sediment of the Langat River. The concentrations of total and bioaccessible metals from different stations were in the range of 0.49-1.04, 0.10-0.32 μg g-1 for T-Cd, Bio-Cd, respectively, and 12.9-128.03, 2.06-8.53 μg kg-1 for T-Hg, Bio-Hg, respectively. The results revealed highest R-Bio-Cd in Banting station (55.3 %), while the highest R-Bio-Hg was in Kajang station (49.61 %). The chemical speciation of Cd in most sampling stations was in the order of oxidisable-organic > residual > exchangeable > acid-reducible, while speciation of Hg was in the order of exchangeable > residual > oxidisable-organic > acid-reducible. The correlation matric of mean content showed that the TOM, particle size and Mg++ in polluted surface sediments was highly correlated with total mercury. The PCA showed that the main factors influencing the bioaccessibility of Hg in surface sediments were the sediment TOM, F1 (EFLE) and F3 (oxidation-organic), while the factor influencing the bioaccessibility of Cd was the F3 (oxidation-organic) and T-Cd.
This study aims to determine the status of potentially toxic element concentrations of road dust in a medium-sized city (Rawang, Malaysia). This study adopts source identification via enrichment factor, Pearson correlation analysis, and Fourier spectral analysis to identify sources of potentially toxic element concentrations in road dust in Rawang City, Malaysia. Health risk assessment was conducted to determine potential health risks (carcinogenic and non-carcinogenic risks) among adults and children via multiple pathways (i.e., ingestion, dermal contact, and inhalation). Mean of potentially toxic element concentrations were found in the order of Pb > Zn > Cr(IV) > Cu > Ni > Cd > As > Co. Source identification revealed that Cu, Cd, Pb, Zn, Ni, and Cr(IV) are associated with anthropogenic sources in industrial and highly populated areas in northern and southern Rawang, cement factories in southern Rawang, as well as the rapid development and population growth in northwestern Rawang, which have resulted in high traffic congestion. Cobalt, Fe, and As are related to geological background and lithologies in Rawang. Pathway orders for both carcinogenic and non-carcinogenic risks are ingestion, dermal contact, and inhalation, involving adults and children. Non-carcinogenic health risks in adults were attributed to Cr(IV), Pb, and Cd, whereas Cu, Cd, Cr(IV), Pb, and Zn were found to have non-carcinogenic health risks for children. Cd, Cr(IV), Pb, and As may induce carcinogenic risks in adults and children, and the total lifetime cancer risk values exceeded incremental lifetime.
The Mamut Copper Mine (MCM) located in Sabah (Malaysia) on Borneo Island was the only Cu-Au mine that operated in the country. During its operation (1975-1999), the mine produced 2.47 Mt of concentrate containing approximately 600,000 t of Cu, 45 t of Au and 294 t of Ag, and generated about 250 Mt of overburden and waste rocks and over 150 Mt of tailings, which were deposited at the 397 ha Lohan tailings storage facility, 15.8 km from the mine and 980 m lower in altitude. The MCM site presents challenges for environmental rehabilitation due to the presence of large volumes of sulphidic minerals wastes, the very high rainfall and the large volume of polluted mine pit water. This indicates that rehabilitation and treatment is costly, as for example, exceedingly large quantities of lime are needed for neutralisation of the acidic mine pit discharge. The MCM site has several unusual geochemical features on account of the concomitant occurrence of acid-forming sulphide porphyry rocks and alkaline serpentinite minerals, and unique biological features because of the very high plant diversity in its immediate surroundings. The site hence provides a valuable opportunity for researching natural acid neutralisation processes and mine rehabilitation in tropical areas. Today, the MCM site is surrounded by protected nature reserves (Kinabalu Park, a World Heritage Site, and Bukit Hampuan, a Class I Forest Reserve), and the environmental legacy prevents de-gazetting and inclusion in these protected area in the foreseeable future. This article presents a preliminary geochemical investigation of waste rocks, sediments, secondary precipitates, surface water chemistry and foliar elemental uptake in ferns, and discusses these results in light of their environmental significance for rehabilitation.
In Asian countries such as China, Malaysia, Pakistan, India, Taiwan, Korea, Japan and Hong Kong, ambient air total suspended particulates and PM2.5 concentration data were collected and discussed during the years of 1998-2015 in this study. The aim of the present study was to (1) investigate and collect ambient air total suspended particulates (TSP) and PM2.5 concentrations for Asian countries during the past two decades. (2) Discuss, analyze and compare those particulates (TSP and PM2.5) annual concentration distribution trends among those Asian countries during the past two decades. (3) Test the mean concentration differences in TSP and PM2.5 among the Asian countries during the past decades. The results indicated that the mean TSP concentration order was shown as China > Malaysia > Pakistan > India > Taiwan > Korea > Japan. In addition, the mean PM2.5 concentration order was shown as Vietnam > India > China > Hong Kong > Mongolia > Korea > Taiwan > Japan and the average percentages of PM2.5 concentrations for Taiwan, China, Japan, Korea, Hong Kong, Mongolia and Other (India and Vietnam) were 8, 21, 6, 8, 14, 13 and 30%, respectively, during the past two decades. Moreover, t test results revealed that there were significant mean TSP and PM2.5 concentration differences for either China or India to any of the countries such as Taiwan, Korea and Japan in Asia during the past two decades for this study. Noteworthy, China and India are both occupied more than 60% of the TSP and PM2.5 particulates concentrations out of all the Asia countries. As for Taiwan, the average PM2.5 concentration displayed increasing trend in the years of 1998-1999. However, it showed decreasing trend in the years of 2000-2010. As for Korea, the average PM2.5 concentrations showed decreasing trend during the years of 2001-2013. Finally, the average PM2.5 concentrations for Mongolia displayed increasing trend in the years of 2004-2013.
Though most childhood lead exposure in the USA results from ingestion of lead-based paint dust, non-paint sources are increasingly implicated. We present interdisciplinary findings from and policy implications of a case of elevated blood lead (13-18 mcg/dL, reference level <5 mcg/dL) in a 9-month-old infant, linked to a non-commercial Malaysian folk diaper powder. Analyses showed the powder contains 62 % lead by weight (primarily lead oxide) and elevated antimony [1000 parts per million (ppm)], arsenic (55 ppm), bismuth (110 ppm), and thallium (31 ppm). These metals are highly bioaccessible in simulated gastric fluids, but only slightly bioaccessible in simulated lung fluids and simulated urine, suggesting that the primary lead exposure routes were ingestion via hand-mouth transmission and ingestion of inhaled dusts cleared from the respiratory tract. Four weeks after discontinuing use of the powder, the infant's venous blood lead level was 8 mcg/dL. Unregulated, imported folk remedies can be a source of toxicant exposure. Additional research on import policy, product regulation, public health surveillance, and culturally sensitive risk communication is needed to develop efficacious risk reduction strategies in the USA. The more widespread use of contaminated folk remedies in the countries from which they originate is a substantial concern.
To develop a novel granular adsorbent to remove arsenic and antimony from water, calcined Mg/Al-layered double-hydroxide (CLDH)-incorporated polyethersulfone (PES) granular adsorbents (PES-LDH) were prepared using a core-shell method having 25% PES in an N,N-dimethylformamide solution. The PES-LDH displayed a spherical hollow shape having a rough surface and the average particle size of 1-2 mm. On the PES-LDH surface, nanosized CLDH (100-150 nm) was successfully immobilized by consolidation between PES and CLDH. The adsorption of Sb(V) by PES-LDH was found to be more favorable than for As(V), with the maximum adsorption capacity of As(V) and Sb(V) being 7.44 and 22.8 mg/g, respectively. The regeneration results indicated that a 0.5 M NaOH and 5 M NaCl mixed solution achieved an 80% regeneration efficiency in As(V) adsorption and desorption. However, the regeneration efficiency of Sb(V) gradually decreased due to its strong binding affinity, even though the PES-LDH showed much higher Sb(V) adsorption efficiency than As(V). This study suggested that PES-LDH could be a promising granular adsorbent for the remediation of As(V) and Sb(V) contained in wastewater.
In order to expound on the present situation and potential risk of road dust heavy metals in major cities, a total of 114 literatures mainly over the past two decades, involving more than 5000 sampling sites in 61 cities of 21 countries, were screened through the collection and analysis of research papers. The concentration, sources, distribution, health risk, sample collection, and analytical methods of heavy metal research on road dust in cities around the world are summarized. The results show that Cd, Zn, and Cu in many urban road dusts in the world are higher than the grade II of the Chinese maximum allowable concentration of potentially toxic elements in the soil. Geo-accumulation index values show that Pb > Cd > Zn > Cu had the highest contamination levels. Hazard index assessment indicates Pb and Cr had the highest potential health risk, especially for children in which ingestion was found as the main exposure pathway. Moreover, through comparative analysis, it is found that some pollutants are higher in developed and industrialized cities and transport (53%) followed by industrial emissions (35%) provide the major contributions to the sources of heavy metals.
Organic pollution continues to be an important worldwide obstacle for tackling health and environmental concerns that require ongoing and prompt response. To identify the LAB content levels as molecular indicators for sewage pollution, surface sediments had obtained from the South region of Malaysia. The origins of the LABs were identified using gas chromatography-mass spectrometry (GC-MS). ANOVA and a Pearson correlation coefficient at p