Displaying publications 21 - 40 of 284 in total

Abstract:
Sort:
  1. Ramli H, Nor Aripin KN, Mohd Said S, Mohamad Hanafiah R, Mohd Dom TN
    J Ethnopharmacol, 2022 Nov 15;298:115598.
    PMID: 35944735 DOI: 10.1016/j.jep.2022.115598
    ETHNOPHARMACOLOGICAL RELEVANCE: Salvadora persica L. and Azadirachtaindica A.Juss. are listed within the most common sources of miswak or chewing stick that widely used among Western Asia and Muslim populations worldwide. Miswak use in conjunction with toothbrush (adjunctive) has become apparent among the adults. Furthermore, miswak has been reported to have mechanical and pharmacological activities, and benefits to the oral health, by many studies.

    AIM OF THE STUDY: To assess the effectiveness of miswak in maintaining periodontal health among adults.

    MATERIALS AND METHODS: We searched for randomised controlled trials (RCTs) investigating the effect of miswak published in PubMed, EBSCOHOST (Dentistry & Oral Sciences), SCOPUS, and Cochrane Database for Systematic Review (CDSR) from inception to May 08, 2022. The primary outcomes of interest were changes in the periodontal health measured with plaque and gingivitis scores as well as subgingival bacteria load. The quality of evidence was assessed using the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) approach while the estimates of effect were pooled using a random-effects model.

    RESULTS: Ten eligible articles were identified, of which 9 could be analysed quantitatively. The remaining report was included as part of the qualitative analysis. The meta-analysis showed that miswak was comparable with the toothbrush in reducing the mean plaque score (p= 0.08, SMD: 0.39, and 95% CI: -0.05 to 0.83) and mean gingivitis score (p= 0.37, SMD: 0.13, and 95% CI: -0.16 to 0.43). Even higher certainty of evidence for the effect of miswak on mean plaque reduction on labial surface of anterior teeth. However, the adjunctive effect of miswak was significantly more superior for reducing plaque (p= 0.01, SMD: 0.68, and 95% CI: 0.14 to 1.22) and gingivitis score (p= 0.04, SMD: 0.66, and 95% CI: 0.03 to 1.29).

    CONCLUSIONS: Miswak effectively reduced plaque and gingivitis scores to a level comparable to toothbrush when used exclusively. Adjunctive miswak use was particularly effective in improving periodontal health. However, the included studies inadequately reported on the method of toothbrushing using miswak and the frequency of miswak use. Therefore, further clinical studies are recommended to explore on the advantages and proper method of miswak practice for optima outcome and safety.

  2. Elgorashi EE, Eldeen IMS, Makhafola TJ, Eloff JN, Verschaeve L
    J Ethnopharmacol, 2022 Mar 01;285:114868.
    PMID: 34826541 DOI: 10.1016/j.jep.2021.114868
    ETHNOBOTANICAL RELEVANCE: Smoke from the wood of Acacia seyal Delile has been used by Sudanese women for making a smoke bath locally called Dukhan. The ritual is performed to relieve rheumatic pain, smooth skin, heal wounds and achieve general body relaxation.

    AIM OF THE STUDY: The present study was designed to investigate the in vitro anti-inflammatory effect of the smoke condensate using cyclooxygenase -1 (COX-1) and -2 (COX-2) as well as its potential genotoxic effects using the bacterial-based Ames test and the mammalian cells-based micronucleus/cytome and comet assays.

    MATERIAL AND METHODS: The smoke was prepared in a similar way to that commonly used traditionally by Sudanese women then condensed using a funnel. Cyclooxygenase assay was used to evaluate its in vitro anti-inflammatory activity. The neutral red uptake assay was conducted to determine the range of concentrations in the mammalian cells-based assays. The Ames, cytome and comet assays were used to assess its potential adverse (long-term) effects.

    RESULTS: The smoke condensate did not inhibit the cyclooxygenases at the highest concentration tested. All smoke condensate concentrations tested in the Salmonella/microsome assay induced mutation in both TA98 and TA100 in a dose dependent manner. A significant increase in the frequency of micronucleated cells, nucleoplasmic bridges and nuclear buds was observed in the cytome assay as well as in the % DNA damage in the comet assay.

    CONCLUSIONS: The findings indicated a dose dependent genotoxic potential of the smoke condensate in the bacterial and human C3A cells and may pose a health risk to women since the smoke bath is frequently practised. The study highlighted the need for further rigorous assessment of the risks associated with the smoke bath practice.

  3. Abd Rashid NA, Lau BF, Kue CS
    J Ethnopharmacol, 2022 Mar 01;285:114787.
    PMID: 34756971 DOI: 10.1016/j.jep.2021.114787
    ETHNOPHARMACOLOGICAL RELEVANCE: The sclerotium of Lignosusrhinocerus (Cooke) Ryvarden is highly valued for its purported medicinal properties. The decoction and macerated materials prepared from the sclerotium are used for treating cancer and other ailments based on extensive traditional knowledge. Scientific evidence from in vitro cytototoxicity, anti-inflammatory and immunomodulatory analyses showed the effectiveness of sclerotial water extracts but toxicity assessment of such preparations has not been reported.

    AIM OF THE STUDY: This study aimed to compare the differential toxicity and teratogenicity (if any) of the hot water (HW) and cold water (CW) extracts of both wild and cultivated sclerotium on zebrafish (Danio rerio) embryos.

    MATERIALS AND METHODS: Zebrafish embryos were treated with varying concentrations of the sclerotial HW and CW extracts (0.3-500 μg/mL) for 72 h until hatching. The hatching, mortality and heartbeat rate of the embryos as well as the potential teratogenic effect of the extracts were assessed in embryos post-treatment with the extracts.

    RESULTS: While the sclerotial HW extracts were nontoxic (LC50 > 500 μg/mL), the sclerotial CW extracts delayed the hatching of the embryos up to 48 h and showed slight toxicity with LC50 values of 398.4 μg/mL and 428.3 μg/mL for the cultivated and wild sclerotium, respectively. The sclerotial CW extracts also induced minor tachycardia in zebrafish larvae. Phenotypic assessment revealed that, while yolk sac edema was observed at high concentrations (300 and 500 μg/mL) of all extracts, curved trunk and bent tail were only observed in the embryos treated with CW extracts of wild sclerotium (300 and 500 μg/mL) but not for CW extracts of cultivated sclerotium at similar concentrations.

    CONCLUSION: The sclerotial water extracts of L.rhinocerus prepared using different methods have varying degree of toxicity and teratogenicity in zebrafish embryos with the sclerotial CW extracts showed higher toxicity than the HW extracts.

  4. Hemagirri M, Sasidharan S
    J Ethnopharmacol, 2022 Feb 15;290:115110.
    PMID: 35181488 DOI: 10.1016/j.jep.2022.115110
    ETHNOPHARMACOLOGICAL RELEVANCE: Polyalthia longifolia var. angustifolia Thw. (Annonaceae) is commonly used in traditional medicine as a tonic for rejuvenation and exhibiting good antioxidant activities.

    AIM OF THE STUDY: To evaluate P. longifolia methanolic leaf extract (PLME) antiaging activity at 1 mg/mL in Saccharomyces cerevisiae BY611 yeast.

    MATERIALS AND METHODS: The antiaging effect of PLME was studied via replicative lifespan assay, antioxidative stress assays, reactive oxygen species (ROS) determination, reduced glutathione (GSH) determination, superoxide dismutase (SOD) and Sirtuin 1 (SIRT1) genes regulation studies and SOD and SIRT1 proteins activities.

    RESULTS: The PLME treatment increased the growth and prolonged the lifespan of the yeast significantly (p 

  5. Azfaralariff A, Farahfaiqah F, Shahid M, Sanusi SA, Law D, Mohd Isa AR, et al.
    J Ethnopharmacol, 2022 Jan 30;283:114751.
    PMID: 34662662 DOI: 10.1016/j.jep.2021.114751
    ETHNOPHARMACOLOGICAL RELEVANCE: Marantodes pumilum (MP) herbs, locally known as Kacip Fatimah, are widely used traditionally to improve women's health. The herb is frequently used for gynecological issues such as menstrual problems, facilitating and quickening delivery, post-partum medication, treats flatulence and dysentery, and. MP extracts are thought to aid in the firming and toning of abdominal muscles, tighten breasts and vaginal muscles, and anti-dysmenorrhea. It also was used for the treatment of gonorrhea and hemorrhoids. As MP product has been produced commercially recently, more in-depth studies should be conducted. The presence of numerous active compounds in MP might provide a synergistic effect and potentially offer other health benefits than those already identified and known.

    AIM OF THE STUDY: This study aimed to use a computational target fishing approach to predict the possible therapeutic effect of Marantodes pumilum and evaluated their effectivity.

    MATERIALS AND METHODS: This study involves a computational approach to identify the potential targets by using target fishing. Several databases were used: PubChem database to obtain the chemical structure of interested compounds; Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) server and the SWISSADME web tool to identify and select the compounds having drug-likeness properties; PharmMapper was used to identify top ten target protein of the selected compounds and Online Mendelian Inheritance in Man (OMIM) was used to predict human genetic problems; the gene id of top-10 proteins was obtained from UniProtKB to be analyzed by using GeneMANIA server to check the genes' function and their co-expression; Gene Pathway established by Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) of the selected targets were analyzed by using EnrichR server and confirmed by using DAVID (The Database for Annotation, Visualization and Integrated Discovery) version 6.8 and STRING database. All the interaction data was analyzed by Cytoscape version 3.7.2 software. The protein structure of most putative proteins was obtained from the RCSB protein data bank. Thedocking analysis was conducted using PyRx biological software v0.8 and illustrated by BIOVIA Discovery Studio Visualizer version 20.1.0. As a preliminary evaluation, a cell viability assay using Sulforhodamine B was conducted to evaluate the potential of the predicted therapeutic effect.

    RESULTS: It was found that four studied compounds are highly correlated with three proteins: EFGR, CDK2, and ESR1. These proteins are highly associated with cancer pathways, especially breast cancer and prostate cancer. Qualitatively, cell proliferation assay conducted shown that the extract has IC50 of 88.69 μg/ml against MCF-7 and 66.51 μg/ml against MDA-MB-231.

    CONCLUSIONS: Natural herbs are one of the most common forms of complementary and alternative medicine, and they play an important role in disease treatment. The results of this study show that in addition to being used traditionally to maintain women's health, the use of Marantodes pumilum indirectly has the potential to protect against the development of cancer cells, especially breast cancer. Therefore, further research is necessary to confirm the potential of this plant to be used in the development of anti-cancer drugs, especially for breast cancer.

  6. Wang R, Ren Q, Gao D, Paudel YN, Li X, Wang L, et al.
    J Ethnopharmacol, 2022 Jan 29;289:115018.
    PMID: 35092824 DOI: 10.1016/j.jep.2022.115018
    ETHNOPHARMACOLOGICAL RELEVANCE: Gastrodia elata Blume (G. elata), a traditional Chinese herb, known as "Tian Ma", is widely used as a common medicine and diet ingredient for treating or preventing neurological disorders for thousands of years in China. However, the anti-depressant effect of G. elata and the underlying mechanism have not been fully evaluated.

    AIM OF THE STUDY: The study is aimed to investigate the anti-depressant effect and the molecular mechanism of G. elata in vitro and in vivo using PC12 cells and zebrafish model, respectively.

    MATERIAL AND METHODS: Network pharmacology was performed to explore the potential active ingredients and action targets of G. elata Blume extracts (GBE) against depression. The cell viability and proliferation were determined by MTT and EdU assay, respectively. TUNEL assay was used to examine the anti-apoptotic effect of GBE. Immunofluorescence and Western blot were used to detect the protein expression level. In addition, novel tank diving test was used to investigate the anti-depressant effect in zebrafish depression model. RT-PCR was used to analyze the mRNA expression levels of genes.

    RESULTS: G. elata against depression on the reticulon 4 receptors (RTN4R) and apoptosis-related targets, which were predicted by network pharmacology. Furthermore, GBE enhanced cell viability and inhibited the apoptosis in PC12 cells against CORT treatment. GBE relieved depression-like symptoms in adult zebrafish, included increase of exploratory behavior and regulation of depression related genes. Mechanism studies showed that the GBE inhibited the expression of RTN4R-related and apoptosis-related genes.

    CONCLUSION: Our studies show the ameliorative effect of G. elata against depression. The mechanism may be associated with the inhibition of RTN4R-related and apoptosis pathways.

  7. Cai R, Yue X, Wang Y, Yang Y, Sun D, Li H, et al.
    J Ethnopharmacol, 2021 Dec 05;281:114563.
    PMID: 34438033 DOI: 10.1016/j.jep.2021.114563
    ETHNOPHARMACOLOGICAL RELEVANCE: The genus Amomum belonging to the family Zingiberaceae, is mainly distributed in tropical regions of Asia and Oceania. Their fruits and seeds are valuable traditional medicine and used extensively, particularly in South China, India, Malaysia, and Vietnam. The genus Amomum has long been used for treating gastric diseases, digestive disorder, cancer, hepatopathy, malaria, etc. AIMS OF THE REVIEW: The main purpose of this review is to provide the available information on the traditional medicinal uses, phytochemistry, and pharmacology aspects of the genus Amomum in order to explore the trends and perspectives for further studies on its non-volatile constituents.

    MATERIALS AND METHODS: The present review collected the literatures published prior to 2020 on the traditional medicinal uses, phytochemistry, and pharmacology of the genus Amomum. The available literatures were extracted from scientific databases, such as Sci-finder, PubMed, Web of Science, Google Scholar, Baidu Scholar, and CNKI, books, and others.

    RESULTS: Herein, we summarize all 166 naturally occurring non-volatile compounds from 16 plants of the genus Amomum reported in 171 references, including flavonoids, terpenoids, diarylheptanoids, coumarins, etc. Triterpenes and flavonoids are the main constituents among these compounds and maybe play an important role in the activities directly or indirectly. As traditional medicine, the plants from the genus Amomum have been usually used in some traditional herbal prescriptions, and pharmacological researches in vitro and in vivo revealed that the extracts possessed significant antioxidant, anti-inflammatory, anti-allergic activities, etc. CONCLUSION: The review systematically summarizes current studies on traditional medicinal uses, phytochemistry, pharmacological activity on the plants from the genus Amomum. To date, the majority of publications still focused on the research of volatile constituents. However, the promising preliminary data of non-volatile constituents indicated the research potential of this genus in phytochemical and pharmacological aspects. Furthermore, the further in-depth investigations on the safety, efficacy, as well as the stereo-chemistry and structure-activity relationships of pure compounds from this genus are essential in the future.

  8. Karim K, Giribabu N, Salleh N
    J Ethnopharmacol, 2021 Nov 15;280:114236.
    PMID: 34044074 DOI: 10.1016/j.jep.2021.114236
    ETHNOPHARMACOLOGICAL RELEVANCE: Marantodes pumilum (Blume) Kuntze has been claimed to be beneficial in protecting the bone against loss in post-menopausal women. In view of increased incidence of diabetes mellitus (DM) in post-menopausal period, M. pumilum ability to overcome the detrimental effect of estrogen-deficiency and DM on the bones were identified.

    AIM OF THE STUDY: To identify the mechanisms underlying protective effect of MPLA on the bone in estrogen-deficient, diabetic condition.

    METHODS: Adult female, estrogen-deficient, diabetic rats (225 ± 10 g) were divided into untreated group and treated with M. pumilum leaf aqueous extract (MPLA) (50 mg/kg/day and 100 mg/kg/day) and estrogen for 28 days (n = 6 per group). Fasting blood glucose (FBG) levels were weekly monitored and at the end of treatment, rats were sacrificed and femur bones were harvested. Bone collagen distribution was observed by Masson's trichome staining. Levels of bone osteoblastogenesis, apoptosis and proliferative markers were evaluated by Realtime PCR, Western blotting, immunofluorescence and immunohistochemistry.

    RESULTS: MPLA treatment was able to ameliorate the increased in FBG levels in estrogen deficient, diabetic rats. In these rats, decreased bone collagen content, expression level of osteoblastogenesis markers (Wnt3a, β-catenin, Frizzled, Dvl and LRP-5) and proliferative markers (PCNA and c-Myc) and increased expression of anti-osteoblastogenesis marker (Gsk-3β) and apoptosis markers (Caspase-3, Caspase-9 and Bax) but not Bcl-2 were ameliorated. Effects of 100 mg/kg/day MPLA were greater than estrogen.

    CONCLUSION: MPLA was able to protect against bone loss, thus making it a promising agent for the treatment of osteoporosis in women with estrogen deficient, diabetic condition.

  9. Siddiqui F, Farooq AD, Mudassar, Kabir N, Fatima N, Abidi L, et al.
    J Ethnopharmacol, 2021 Nov 15;280:114409.
    PMID: 34265378 DOI: 10.1016/j.jep.2021.114409
    ETHNOPHARMACOLOGICAL RELEVANCE: The edible plant Opuntia dillenii (Ker Gawl.) Haw. commonly known as Nagphana, belongs to the Cactaceae family. It is traditionally used to treat various ailments including inflammation, gastric ulcers, diabetes, hepatitis, asthma, whooping cough and intestinal spasm.

    AIM OF THE STUDY: Despite its traditional use in various countries, detailed toxicological studies of O. dillenii cladode are few. Thus in the current study, toxicity of O. dillenii cladode derived methanol extract, fractions and its α-pyrones: opuntiol and opuntioside have been addressed.

    METHODS: The test agents were assessed using both in vitro and in vivo toxicity assays. MTT on human embryonic kidney cell line (HEK-293), tryphan blue exclusion in rat neutrophils, Cytokinesis-B block micronucleus (CBMN) in human lymphocytes and genomic DNA fragmentation using agarose gel electrophoresis were performed. In acute toxicity test, mice orally received extract (5 g/kg) for 7 days followed by measurements of relative organ weight, biochemical (blood profile, liver and kidney function test) and histological studies (liver and kidney) were carried out. Rat bone marrow micronucleus genotoxicity assay was also conducted.

    RESULTS: O. dillenii derived test agents were non-cytotoxic and had no effect on the integrity of DNA. Methanol extract (5 g/kg) orally administered in mice did not cause any significant change in relative organ weights, biochemical parameters and liver and kidney histology as compared to vehicle control. In parallel, extract did not stimulate micronuclei formation in rat bone marrow polychromatic erythrocytes.

    CONCLUSION: These results led to conclude that edible O. dillenii extract is non-toxic via the oral route and appears to be non-cyto-, hepato-, nephro- or genotoxic, thereby supporting its safe traditional use against various ailments. Therefore, opuntiol and opuntioside may serve as lead compounds in designing new drug(s) derived from edible plants.

  10. Tan FHP, Ting ACJ, Leow BG, Najimudin N, Watanabe N, Azzam G
    J Ethnopharmacol, 2021 Oct 28;279:114389.
    PMID: 34217797 DOI: 10.1016/j.jep.2021.114389
    ETHNOPHARMACOLOGICAL RELEVANCE: Danshen water extract (DWE), obtained from the Salvia miltiorrhiza Bunge (Family Lamiaceae) root, is usually employed in Chinese traditional medicine as treatment to cardiovascular ailments and cerebrovascular diseases. Intriguingly, the extract was also found to contain vast beneficial properties in Alzheimer's disease (AD) treatment.

    AIM OF THE STUDY: Alzheimer's disease is the most significant type of neurodegenerative disorder plaguing societies globally. Its pathogenesis encompasses the hallmark aggregation of amyloid-beta (Aβ). Of all the Aβ oligomers formed in the brain, Aβ42 is the most toxic and aggressive. Despite this, the mechanism behind this disease remains elusive. In this study, DWE, and its major components, Salvianolic acid A (SalA) and Salvianolic acid B (SalB) were tested for their abilities to attenuate Aβ42's toxic effects.

    METHODS: The composition of DWE was determined via Ultra-Performance Liquid Chromatography (UPLC). DWE, SalA and SalB were first verified for their capability to diminish Aβ42 fibrillation using an in vitro activity assay. Since Aβ42 aggregation results in neuronal degeneration, the potential Aβ42 inhibitors were next evaluated on Aβ42-exposed PC12 neuronal cells. The Drosophila melanogaster AD model was then employed to determine the effects of DWE, SalA and SalB.

    RESULTS: DWE, SalA and SalB were shown to be able to reduce fibrillation of Aβ42. When tested on PC12 neuronal cells, DWE, SalA and SalB ameliorated cells from cell death associated with Aβ42 exposure. Next, DWE and its components were tested on the Drosophila melanogaster AD model and their rescue effects were further characterized. The UPLC analysis showed that SalA and SalB were present in the brains and bodies of Drosophila after DWE feeding. When human Aβ42 was expressed, the AD Drosophila exhibited degenerated eye structures known as the rough eye phenotype (REP), reduced lifespan and deteriorated locomotor ability. Administration of DWE, SalA and SalB partially reverted the REP, increased the age of AD Drosophila and improved most of the mobility of AD Drosophila.

    CONCLUSION: Collectively, DWE and its components may have therapeutic potential for AD patients and possibly other forms of brain diseases.

  11. Domnic G, Jeng-Yeou Chear N, Abdul Rahman SF, Ramanathan S, Lo KW, Singh D, et al.
    J Ethnopharmacol, 2021 Oct 28;279:114391.
    PMID: 34224811 DOI: 10.1016/j.jep.2021.114391
    ETHNOPHARMACOLOGICAL RELEVANCE: Mitragyna speciosa (Korth.) or kratom is a medicinal plant indigenous to Southeast Asia. The leaf of M. speciosa is used as a remedy in pain management including cancer related pain, in a similar way as opioids and cannabis. Despite its well-known analgesic effect, there is a scarce of information on the cancer-suppressing potential of M. speciosa and its active constituents.

    AIM OF THE STUDY: To assess the potential applicability of M. speciosa alkaloids (mitragynine, speciociliatine or paynantheine) as chemosensitizers for cisplatin in Nasopharyngeal carcinoma (NPC) cell lines.

    MATERIALS AND METHODS: The cytotoxic effects of the extracts, fractions and compounds were determined by conducting in vitro cytotoxicity assays. Based on the cytotoxic screening, the alkaloid extract of M. speciosa exhibited potent inhibitory effect on the NPC cell line NPC/HK1, and therefore, was chosen for further fractionation and purification. NPC cell lines NPC/HK1 and C666-1 were treated with combinations of cisplatin and M. speciosa alkaloids combinations in 2D monolayer culture. The effect of cisplatin and mitragynine as a combination on cell migration was tested using in vitro wound healing and spheroid invasion assays.

    RESULTS: In our bioassay guided isolation, both methanolic and alkaloid extracts showed mild to moderate cytotoxic effect against the NPC/HK1 cell line. Both NPC cell lines (NPC/HK1 and C666-1) were insensitive to single agent and combination treatments of the M. speciosa alkaloids. However, mitragynine and speciociliatine sensitized the NPC/HK1 and C666-1 cells to cisplatin at ~4- and >5-fold, respectively in 2D monolayer culture. The combination of mitragynine and cisplatin also significantly inhibited cell migration of the NPC cell lines. Similarly, the combination also of mitragynine and cisplatin inhibited growth and invasion of NPC/HK1 spheroids in a dose-dependent manner. In addition, the spheroids did not rapidly develop resistance to the drug combinations at higher concentrations over 10 days.

    CONCLUSION: Our data indicate that both mitragynine and speciociliatine could be potential chemosensitizers for cisplatin. Further elucidation focusing on the drug mechanistic studies and in vivo studies are necessary to support delineate the therapeutic applicability of M. speciosa alkaloids for NPC treatment.

  12. Zolkiffly SZI, Stanslas J, Abdul Hamid H, Mehat MZ
    J Ethnopharmacol, 2021 Oct 28;279:114309.
    PMID: 34119609 DOI: 10.1016/j.jep.2021.114309
    ETHNOPHARMACOLOGICAL RELEVANCE: Ficus deltoidea Jack (FD) is widely consumed in traditional medicine as a treatment for various diseases in Malaysia. Each part of the plant such as its leave, stem, fruit and root are used traditionally to treat different types of diseases. Vitexin and isovitexin are bioactive compounds abundantly found in the leaves of FD that possessed many pharmacological properties including neuroprotection. Nonetheless, its effects on key events in neuroinflammation are unknown.

    AIM OF THE STUDY: To determine the inhibitory properties of FD aqueous extract on pro-inflammatory mediators involved in lipopolysaccharide (LPS)-induced microglial cells.

    METHODS: Vitexin and isovitexin in the extract were quantified via high performance liquid chromatography (HPLC). The extract was evaluated for its cytotoxicity activity via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Pre-treatment with the extract on LPS-induced microglial cells was done to determine its antioxidant and anti-neuroinflammatory properties by measuring the level of reactive oxygen species (ROS), nitric oxide (NO), tumour necrosis factor alpha (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) via 2'-7'-dichlorofluorescin diacetate (DCFDA) assay, Griess assay and Western blot respectively.

    RESULTS: The extract at all tested concentrations (0.1 μg/mL, 1 μg/mL, 10 μg/mL, 100 μg/mL) were not cytotoxic as the percentage viability of microglial cells were all above ~80%. At the highest concentration (100 μg/mL), the extract significantly reduced the formation of ROS, NO, TNF-α, IL-1β and IL-6 in microglial cells induced by LPS.

    CONCLUSION: The extract showed neuroprotective effects by attenuating the levels of pro-inflammatory and cytotoxic factors in LPS-induced microglial cells, possibly by mediating the nuclear factor-kappa B (NF-κB) signalling pathway.

  13. Kamarudin AA, Sayuti NH, Saad N, Razak NAA, Esa NM
    J Ethnopharmacol, 2021 Oct 21;284:114770.
    PMID: 34688803 DOI: 10.1016/j.jep.2021.114770
    ETHNOPHARMACOLOGICAL RELEVANCE: The bulb of Eleutherine bulbosa (Mill.) Urb. is an indigenous medicinal plant traditionally used among Dayak people for the management of diabetes, breast cancer, hypertension, stroke, and fertility problems in women. The bulb has been reported with a potent cytotoxic potential but with limited underlying mechanisms.

    AIM OF THE STUDY: This study aimed to investigate the cytotoxic properties of E. bulbosa ethanolic bulb extracted under optimised extraction condition on retinoblastoma cancer cells (WERI-Rb-1) through in vitro cell culture bioassays. The optimised extraction condition has been determined in the previous reports.

    MATERIALS AND METHODS: Cytotoxic assay was analysed through MTT assay. Comparison between non-optimised and optimised extraction condition from E. bulbosa ethanolic bulb extract was evaluated. Morphological assessment of apoptotic cells was conducted through acridine orange propidium iodide (AOPI) staining using fluorescence microscopy. Apoptosis assay was carried out through Annexin V-FITC and cell cycle analysis through PI staining. The effect of varying concentrations (IC25, IC50, IC75) of the optimised E. bulbosa ethanolic bulb extract was observed. The mRNA expression was also conducted to confirm the underlying mechanism.

    RESULTS: The optimised E. bulbosa ethanolic bulb extract markedly suppressed the proliferation of retinoblastoma cancer cells significantly with an IC50 value of 15.7 μg/mL as compared to non-optimised extract (p 

  14. Rosdy MS, Rofiee MS, Samsulrizal N, Salleh MZ, Teh LK
    J Ethnopharmacol, 2021 Oct 05;278:114290.
    PMID: 34090909 DOI: 10.1016/j.jep.2021.114290
    ETHNOPHARMACOLOGICAL RELEVANCE: Moringa leaves have been used for thousands of years to maintain skin health and mental fitness. People also use it to relieves pain and stress.

    AIM OF THE STUDY: To determine the effects of Moringa oleifera leaves ethanol-aqueous (ratio 7:3) extract (MOLE) on the chronically stressed zebrafish.

    METHOD: The changes in the stress-related behaviour and the metabolic pathways in response to MOLE treatment in zebrafish were studied. A chronic unpredictable stress model was adopted in which zebrafish were induced with different stressors for 14 days. Stress-related behaviour was assessed using a depth-preference test and a light and dark test. Three doses of MOLE (500, 1000, and 2000 mg/L) were administered to the zebrafish. Upon sacrifice, the brains were harvested and processed for LC-MS QTOF based, global metabolomics analysis.

    RESULTS: We observed significant changes in the behavioural parameters, where the swimming time at the light phase and upper phase of the tank were increased in the chronically stressed zebrafish treated with MOLE compared to those zebrafish which were not treated. Further, distinctive metabolite profiles were observed in zebrafish with different treatments. Several pathways that shed light on effects of MOLE were identified. MOLE is believed to relieve stress by regulating pathways that are involved in the metabolism of purine, glutathione, arginine and proline, D-glutamine, and D-glutamate.

    CONCLUSION: MOLE is potentially an effective stress reliever. However, its effects in human needs to be confirmed with a systematic randomised control trial.

  15. Ooi KL, Zakaria R, Tan ML, Sulaiman SF
    J Ethnopharmacol, 2021 Oct 05;278:114294.
    PMID: 34090914 DOI: 10.1016/j.jep.2021.114294
    ETHNOPHARMACOLOGICAL RELEVANCE: Anti-hyperuricemic plant parts that were selected for this study, are traditionally used to treat gout in Malaysia. Caffeic acid (a hydroxycinnamic acid), apigenin (a flavone), myricetin, quercetin and kaempferol (flavonols), were reported to act as potent xanthine oxidase inhibitors. These compounds can be found in some of the selected ethnomedicinal plants. However, there is still lack of published research works on the quantification of these inhibitors from these urate-lowering phytotherapies.

    AIMS OF THE STUDY: The compounds were quantified from 21 hydrolyzed extracts of the phytotherapies for gout. The activity-content contributions of the compounds to the potent extracts were determined.

    MATERIALS AND METHODS: The anti-hyperuricemic activities of the extracts and the compounds were determined using a xanthine oxidase inhibitory assay. Ultra-Performance Liquid Chromatography (UPLC) coupled with Photodiode Array Detector (PDA) was used to quantify the compounds in the extracts.

    RESULTS: The results revealed higher activity of the hydrolyzed extracts. The hydrolyzed extract of the flower bud of Syzygium aromaticum Merr. & L.M.Perry exhibited the highest activity (EC50 = 39.58 ± 0.10 μg/mL) due to the highest content of myricetin (42,297.55 ± 159.47 μg/g). The activity-content contribution of myricetin was 7.69%. Due to the highest activity of apigenin (EC50 = 3.27 ± 0.09 μg/mL), the highest contribution of this flavone (29.96%) to the hydrolyzed extract of Orthosiphon aristatus (Blume) Miq. was observed.

    CONCLUSION: The results revealed different contents and activities of xanthine oxidase inhibitors in the hydrolyzed extracts of anti-hyperuricemic plants can play a major role to influence the activity.

  16. Khandokar L, Bari MS, Seidel V, Haque MA
    J Ethnopharmacol, 2021 Oct 05;278:114313.
    PMID: 34116186 DOI: 10.1016/j.jep.2021.114313
    ETHNOPHARMACOLOGICAL RELEVANCE: Glycosmis pentaphylla (Retz.) DC. is a perennial shrub indigenous to the tropical and subtropical regions of India, China, Sri Lanka, Myanmar, Bangladesh, Indonesia, Malaysia, Thailand, Vietnam, Philippine, Java, Sumatra, Borneo and Australia. The plant is used extensively within these regions as a traditional medicine for the treatment of a variety of ailments including cough, fever, chest pain, anemia, jaundice, liver disorders, inflammation, bronchitis, rheumatism, urinary tract infections, pain, bone fractures, toothache, gonorrhea, diabetes, cancer and other chronic diseases.

    AIM OF THE REVIEW: This review aims to present up-to-date information regarding the taxonomy, botany, distribution, ethnomedicinal uses, phytochemistry, pharmacology and toxicological profile of G. pentaphylla. The presented information was analyzed critically to understand current work undertaken on this species and explore possible future prospects for this plant in pharmaceutical research.

    MATERIALS & METHODS: Bibliographic databases, including Google Scholar, PubMed, Web of Science, ScienceDirect, SpringerLink, Wiley Online Library, Semantic Scholar, Europe PMC, Scopus, and MEDLINE, were explored thoroughly for the collection of relevant information. The structures of phytoconstituents were confirmed with PubChem and SciFinder databases. Taxonomical information on the plant was presented in accordance with The Plant List (version 1.1).

    RESULTS: Extensive phytochemical investigations into different parts of G. pentaphylla have revealed the presence of at least 354 secondary metabolites belonging to structurally diverse classes including alkaloids, amides, phenolic compounds, flavonoids, glycosides, aromatic compounds, steroids, terpenoids, and fatty derivatives. A large number of in vitro and in vivo experiments have demonstrated that G. pentaphylla had anticancer, antimutagenic, antibacterial, antifungal, anthelmintic, mosquitocidal, antidiabetic, antihyperlipidemic, anti-oxidant, anti-inflammatory, analgesic, antipyretic, anti-arsenicosis, and wound healing properties. Toxicological studies have established the absence of any significant adverse reactions and showed that the plant had a moderate safety profile.

    CONCLUSIONS: G. pentaphylla can be suggested as a source of inspiration for the development of novel drugs, especially anticancer, antimicrobial, anthelmintic, and mosquitocidal agents. Moreover, bioassay-guided investigations into its diverse classes of secondary metabolites, especially the large pool of nitrogen-containing alkaloids and amides, promises the development of novel drug candidates. Future pharmacological studies into this species are also warranted as many of its traditional uses are yet to be validated scientifically.

  17. Аrbаin D, Saputri GA, Syahputra GS, Widiyastuti Y, Susanti D, Taher M
    J Ethnopharmacol, 2021 Oct 05;278:114316.
    PMID: 34116190 DOI: 10.1016/j.jep.2021.114316
    ETHNOPHARMACOLOGICAL RELEVANCE: The genus Pterocarpus (Fabaceae) has about 46 species that are distributed over Asia, especially Indonesia, Africa, and several countries in America. Particularly, P. indicus and P. santalinus have been recorded as ancestor recipe in the old Indonesian book (Cabe puyang warisan nenek moyang). These plants have found application in traditional medicine, such as in the treatment of inflammatory diseases, gonorrhoea, infection, coughs, mouth ulcers, boils, diarrhoea, as well as in the management of pain (as an analgesic).

    AIM OF THE REVIEW: The present review aimed to comprehensively summarise the current researches on the traditional and scientific applications of the genus Pterocarpus with regard to the phytochemical content, in vivo and in vitro bioactivities, as well as clinical evidence that may be useful for future drug development.

    MATERIALS AND METHODS: Information about the Pterocarpus genus were obtained from local classic herbal literature and electronic databases, such as PubMed, Scopus, and Google Scholar. The scientific name of the species and its synonyms were checked with the information of The Plant List. Additionally, clinical trial results were obtained from the Cochrane library.

    RESULTS: Several phytochemical constituents of the plants, e.g., flavonoids, isoflavonoids, terpenoids, phenolic acids, and fatty acids have been reported. There are about 11 species of Pterocarpus that have been scientifically studied for their biological activities, including anti-inflammatory, anti-microbial, analgesic, and anti-hyperglycemic. Of which, the anti-hyperglycemic activity of the extracts and phytochemicals of P. indicus and P. marsupium is particularly remarkable, allowing them to be further studied under clinical trial.

    CONCLUSION: The present review has provided an insight into the traditional applications of the plants and some of them have been validated by scientific evidence, particularly their applications as anti-inflammatory and anti-microbial agents. In addition, the genus has demonstrated notable anti-diabetic activity in various clinical trials.

  18. Meng X, Li J, Li M, Wang H, Ren B, Chen J, et al.
    J Ethnopharmacol, 2021 Aug 10;276:114145.
    PMID: 33932518 DOI: 10.1016/j.jep.2021.114145
    ETHNOPHARMACOLOGICAL RELEVANCE: Gynura cass., belonging to the tribe Senecoineae of the family Compositae, contains more than 40 accepted species as annual or perennial herbs, mainly distributed in Asia, Africa and Australia. Among them, 11 species are distributed in China. Many of the Gynura species have been used as traditional herbal medicines for the treatment of diabetes mellitus, rheumatism, eruptive fever, gastric ulcer, bleeding, abscesses, bruises, burning pains, rashes and herpes zoster infection in tropical Asia countries such as China, Thailand, Indonesia, Malaysia, and Vietnam. Some of the species have been used as vegetables, tea beverage or ornamental plants by the local people.

    AIM OF THE STUDY: A more comprehensive and in-depth review about the geographical distribution, traditional uses, chemical constituents and pharmacological activities as well as safe and toxicity of Gynura species has been summarized, hoping to provide a scientific basis for rational development and utilization as well as to foster further research of these important medicinal plant resources in the future.

    MATERIALS AND METHODS: A review of the literature was performed based on the existing peer-reviewed researches by consulting scientific databases including Web of Science, PubMed, Elsevier, Google Scholar, SciFinder and China National Knowledge Infrastructure.

    RESULTS: Many of the Gynura species have been phytochemically studied, which led to the isolation of more than 338 compounds including phenolics, flavonoids, alkaloids, terpenoids, steroids, cerebrosides, aliphatics and other compounds. Pharmacological studies in vitro and in vivo have also confirmed the various bioactive potentials of extracts or pure compounds from many Gynura plants, based on their claimed ethnomedicinal and anecdotal uses, including antioxidant, anti-inflammation, anticancer, antidiabetic, antihypertension, antibacterial and other activities. However, pyrrolizidine alkaloids (PAs) pose a threat to the medication safety and edible security of Gynura plants because of toxicity issues, requiring the need to pay great attention to this phenomenon.

    CONCLUSION: The traditional uses, phytochemistry and pharmacology of Gynura species described in this review demonstrated that these plants contain a great number of active constituents and display a diversity of pharmacological activities. However, the mechanism of action, structure-activity relationship, potential synergistic effects and pharmacokinetics of these components need to be further elucidated. Moreover, further detailed research is urgently needed to explain the mechanisms of toxicity induced by PAs. In this respect, effective detoxification strategies need to be worked out, so as to support the safe and reasonable utilization of Gynura plant resources in the future.

  19. Attiq A, Jalil J, Husain K, Mohamad HF, Ahmad A
    J Ethnopharmacol, 2021 Jul 15;275:114120.
    PMID: 33857595 DOI: 10.1016/j.jep.2021.114120
    ETHNOPHARMACOLOGICAL RELEVANCE: Numerous Alphonsea species including Alphonsea elliptica (mempisang) leaves and fruits are indigenously used in inflammatory conditions such as postpartum swelling and rheumatism in southeast Asian countries. In our previous in-vitro findings, A. elliptica methanol extract exhibited platelet-activating factor inhibition, suggesting the presence of phyto-constituents with anti-inflammatory potential.

    AIM OF THE STUDY: However, so far there is no literature available on the anti-inflammatory activity of this species. Henceforth, based on the above background and our previous laboratory findings, we hypothesize that phytoconstituents of A. elliptica could possess anti-inflammatory potential against inflammatory mediators including prostaglandin-E2 (PGE2), cyclooxegenase-2 (COX-2) and cytokines (IL-1β and IL-6).

    MATERIALS AND METHODS: Vacuum and column chromatography techniques were employed for the isolation of phytoconstituents. The structure elucidation was carried out using HRESI-MS, 1H and 13C-NMR analysis and compared with the published literature. For cytotoxicity analysis, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed on peripheral blood mononuclear cells. In-vitro anti-inflammatory activities were evaluated against the levels of PGE2, COX-2, IL-1β and IL-6 in lipopolysaccharide (LPS)-induced human plasma using enzyme-linked immunosorbent assay and radioimmunoassay.

    RESULTS: Unprecedentedly, chromatographic purification of methanolic leaves extract afforded five flavones namely vitexin, isovitexin, orientin, isoorientin, schaftoside with three flavanols; kaempferol, myricetin and rutin from A elliptica. In cell viability analysis, isolates did not present cytotoxicity up to 50 μM. In anti-inflammatory evaluation, orientin and isoorientin exhibited strong (≥70%), while isovitexin and vitexin produced strong to moderate (50-69%) PGE2, COX-2, IL-1β and IL-6 inhibition at 25 and 50 μM. Isoorientin, orientin, isovitexin, and vitexin showed significant (p 

  20. Dwivedi MK, Shukla R, Sharma NK, Manhas A, Srivastava K, Kumar N, et al.
    J Ethnopharmacol, 2021 Jul 15;275:114076.
    PMID: 33789139 DOI: 10.1016/j.jep.2021.114076
    ETHANOPHARMACOLOGICAL RELEVANCE: Limited drugs, rise in drug resistance against frontline anti-malarial drugs, non-availability of efficacious vaccines and high cost of drug development hinders malaria intervention programs. Search for safe, effective and affordable plant based anti-malarial agents, thus becomes crucial and vital in the current scenario. The Vitex negundo L. is medicinal plant possessing a variety of pharmaceutically important compounds. The plant is used traditionally worldwide for the treatment of malaria including India and Malaysia by the indigenous tribes. In vitro studies have reported the anti-malarial use of the plant in traditional medicinal systems.

    AIM OF THE STUDY: The aim of the current study is to evaluate the traditionally used medicinal plants for in vitro anti-malarial activity against human malaria parasite Plasmodium falciparum and profiling secondary metabolite using spectroscopic and chromatographic methods. Chemical profiling of active secondary metabolites in the extracts was undertaken using LC-MS.

    MATERIALS AND METHODS: Based on the ethno-botanical data V. negundo L. was selected for in vitro anti-malarial activity against P. falciparum chloroquine-sensitive (3D7) and multidrug resistant (K1) strains using SYBR Green-I based fluorescence assay. Cytotoxicity of extracts was evaluated in VERO cell line using the MTT assay. Haemolysis assay was performed using human red blood cells. Secondary metabolites profiling was undertaken using chromatographic and spectroscopic analysis. Liquid chromatography analysis was performed using a C18, 150 X 2.1, 2.6 μm column with gradient mobile phase Solvent A: 95% (H2O: ACN), Solvent B: Acetonitrile, Solvent C: Methanol, Solvent D: 5 mM NH4 in 95:5 (H2O: ACN) at a constant flow rate of 0.250 ml/min. The LC-MS spectra were acquired in both positive and negative ion modes with electrospray ionization (ESI) source.

    RESULTS: The anti-malarial active extract of V. negundo L. leaf exhibited potent anti-malarial activity with IC50 values of 7.21 μg/ml and 7.43 μg/ml against 3D7 and K1 strains, respectively with no evidence of significant cytotoxicity against mammalian cell line (VERO) and no toxicity as observed in haemolysis assay. The HPLC-LC-MS analysis of the extract led to identification of 73 compounds. We report for the first time the presence of Sabinene hydrate acetate, 5-Hydroxyoxindole, 2(3,4-dimethoxyphenyl)-6, 7-dimethoxychromen-4-one, Cyclotetracosa-1, 13-diene and 5, 7-Dimethoxyflavanone in the anti-malarial active extract of V. negundo L. leaf. Agnuside, Behenic acid and Globulol are some of the novel compounds with no reports of anti-malarial activity so far and require further evaluation in pure form for the development of potent anti-malarial compounds.

    CONCLUSIONS: The result report and scientifically validate the traditional use of V. negundo L. for the treatment of malaria providing new avenues for anti-malarial drug development. Several novel and unknown compounds were identified that need to be further characterized for anti-malarial potential.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links